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gg.Al\gOLECULAR MODEL OF AN IDEAL

ldeal gas model:

1. The number of molecules in the gas is large and the average separation among
molecules is large compared with their size.

2. Newton's law of motion is strictly obeyed for each molecule, but molecules move
randomly.

3. The molecules interact only by short-range force during elastic collisions.
4. The molecules make elastic collisions with the walls.
5. The gas under consideration is a pure substance; that is, all molecules are identical.

A

N molecules in the cube of length d

each molecule has a mass of m and D
velocity v = v, + vyj + v,k .Ié’m

v

use impulse to estimate the force on the walls, assume an
interval At between successive collisions on the wall




gg.Al\gOLECULAR MODEL OF AN IDEAL

|deal gas model: j&?
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1. MOLECULAR MODEL OF AN IDEAL

GAS

ldeal gas model:
UZ

PV—N2
-3

muv? _3k .
2 | 278

We will learn the concept later from the equipartition theory.

>:ompore WIthPV = NkgT

one degree of freedom: <m:x> = EkBT
2
three degree of freedom: <m: > = ;kBT

UZ

3
2 =_NkBT

2

The internal energy of an ideal gas: E,; = N

The root-mean-square speed of a molecule:

3k, T 3k, T
Z Urms = (v?) = -

(V%) =

v




ES.AI\gOLECULAR MODEL OF AN IDEAL

Example: Please calculate the root-mean-square speed of a hydrogen molecule at
room temperature.

= BkBT— 3RTM—0002k R = 8.314 / T =300K
Vrms = [T T Ty M T g =0 mol k'~

Vrms =1930 m/s

Example: A tank of volume 0.300 m3 contains 2.00 mole of helium gas at 20.0°C.
Assuming the helium behaves like an ideal gas,

(a) find the total internal energy of the gas.

(b) What is the root-mean-square speed of the helium atomse

n=2.0mol, T =20°C = 293.15K

3 3
- E = EnRT =3 (2.00)(8.314)(293.15) = 7310

_ [3RT_ [38319(29315)
Vrms = [Tar = 0.004 N m/s




2. MOLAR SPECIFIC HEAT OF AN
IDEAL GAS

Equations for an ideal gas:

3
PV =nRT AW = — J PAV  AEp, = AQ +AW  Eppe = 5nRT

Molar specific heat at constant volume:

_ (A0Q) 3 3

— Tl(AT)V=V0 AV =0 - AW = 0,AE;,,: = AQ Eine = EnRT — AEj: = EnR(AT)
(AQ) (AE) 3nR(AT)/2 3R

~n(AT)  n(AT)  n(AT) 2

Cv

Cv

Molar specific heat at constant pressure:

(AQ)

Cp = - . _
P n(AT)p=p0 AP =0-> AW # 0 PV = nRT - P(AV) = nR(AT)

3
AEgne = 5nR(AT),AQ = AE — AW = AE + P(AV)

3 %nR(AT) + nR(AT) 5
AQ =>nR(AT) + nR(AT) — Cp = AT =C/+R=3R




2. MOLAR SPECIFIC HEAT OF AN
IDEAL GAS

The ratio of the two molar specific heats is defined: Y = C_v
The specific heats of monatomic, diatomic, and triatomic gas:

_

20.8 12.5 833 1.67=5/3
H, 28.8 20.4 8.33 1.41=7/5
CO, 37 28.5 8.5 1.31=9/7

Example: A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.
(a) If the gas is heated at constant volume, how much energy must be
transferred by heat to the gas after it is heated to 500 K2 (b) How much energy
must be fransferred by heat to the gas at constant pressure?

n = 3.00 mol, AT = 500 — 300 = 200 K, Cy = 3R/2,Cp = 5R/2

J

AQy = nCy(AT) = (3.00)(3R/2)(200) = 7480
mol K

R =8.314

AQp = nCp(AT) = (3.00)(5R/2)(200) = 12500 J
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3. ADIABATIC PROCESSES FOR AN

IDEAL GAS

Adiabatic process: what is the P-V dependence?¢

AQ = 0 — AE;,; = AW = —PAV

Eine = nCyT - AEi,; = nCy(AT)
nCy(AT) = —P(AV)

PV = nRT - P(AV) + V(AP) = nR(AT)
P(AV) + V(AP) = n(Cp — Cy)(AT)

P

1400+

1000+

800+

600+

400+

200

isothermal

C
adiabatic P(V) = —
A7

K l/]/
S 300K

—P(AV) !
P(AV) + V(AP) o (CP i CV) CV % — 3 5 4' - éV
P(AV) +V(AP) = (1 —y)P(AV) - yP(AV) + V(AP) =0
dv dP v\’ /P,
y7+?=0—>y(an—an0)=—lnP+lnP0—> 70 :(F)

— PVY = POVOV = const



3. ADIABATIC PROCESSES FOR AN
IDEAL GAS

Example: The fuel-air mixture in the cylinder of a diesel engine at 20.0°C is
compressed from an initial pressure of 1.00 atm and volume of 800 cm3 to a volume
of 60.0 cm3. Assuming that the mixture behave as an ideal gas with y = 1.4 and that
the compression is adiabatic, find the final pressure and temperature of the mixture.

P; = 1atm,V; =800 cm?®T; = 293.15K,V; = 60 cm?

In an adiabatic process, the P-V follows P,V;" = PV}

_ PV’ 1.00 x 800"

Pr = = = 37.
[ W, G0 01" 37.6 atm

T,VY™"  293.15x 800%*

T - eoges oK
f

-1 -1
TV " =TV > Ty =




4. THE EQUIPARTITION OF ENERGY

The theory of the equipartition of energy: In the equilibrium condition, each

degree of freedom contributes an average energy of kzT /2 per molecule. vy
Monatomic gas molecule: three degrees of freedom of translational motion Uy
Diatomic gas molecule: / 2
three degrees of freedom for translation motion 1

two degrees of freedom for rotational motion <[>

A

3 5 : : :
Cy = ER' Cp = ER for molecules only in translational motion

two degrees of freedom for vibrational motion S
Molar specific heat of the diatomic gas system: @/

= gR, Cp = %R for molecules in translational and rotational mofion .}%

7 ©) - > . . .
Cy =R, Cp =3R for molecules in translational, rotational, and vibrational

motion



4. THE EQUIPARTITION OF ENERGY

Cp molar specific heat at constant pressure of normal
hydrogen molecules

U.S. Department of Commerce National Bureau of
Standards, V41, P379 (1948).

The temperature dependence implies the energy
quantization for rotational and vibrational motions.

It points out the difference between classical and
quantum statistics.

AEtrans < AErot < AEvib

Gp Col mele!deg-!
=~

]

C. — 9R — 7
.95 cal/mol ¥ e i
’4: *» Cornish & Easiman
g& + Grofis
LA o, S |
; Ch=7 ¢ paredin 8 vone
1_6.96 cal/moLK | oy Sueme ||
j?)OO K
Cp = 5[R/2 = 4.97 cal/mol K|
0 000 2000 T % 2000 4900

FrouRe 3. Specific heal of mormal hudropen al comstani presmere.
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5. DISTRIBUTION OF MOLECULAR
SPEED

Probability and statistics: distribution functions (the probability of the occurrence
times)

occurrence times of the ith event: n;, Y n; = N
distribution function: f; = n;/N, X2, fi =1
If the value of the i'h event is s;

the average value is sg,y = (s) = Z"‘S‘ = Z—Sl Y fiS;
the average of the square of the volue s (s qpg = (2 =X fis?

the root-mean-square of the value is s, = /{(s2)
the standard deviation is o = /{(s; — (s)2) = 1/(s2) — (s)2
Continuous distribution: f; - f(x),Y fi=1- [ f(x)dx =1

the value is also a function of x, s(x)
the average of the value is (s) = [ s(x) f(x)dx

(s?) = f[S(x)]Zf(x)dx,srms = /(s2),0 = /(s2) — (s)2




5. DISTRIBUTION OF MOLECULAR
SPEED

The occurrence probability of a molecule with kinetic energy E
follows the Maxwell-Boltzmann distribution:

P(E) = cexp <_EET>

In a two dimensional system, the number of molecules is
proportional to the ring area and the energy distribution function:

P(E)2nvdv, E = mv?/2

In a three dimensional system, the number v,
of moleculesis N(w)dv « 4nv?dv X exp(—E /kgT) 4
N(w) = kv? exp(—mv?/2kgT) ﬁ
Normalize it by: ==Yy
3
(0] m 2
Nw)dv =N = 4nN Ux

_[0 (v)dv i & <2T[kBT>




5. DISTRIBUTION OF MOLECULAR
SPEED

Mathematical methods: N(v) = kv? exp(—mv?/2kgT) &
2

() = exp( — ), let A = == — f(4,v) = exp(—Av?)
f(v) =exp 2%,T)’ e _ZkBT f(4,v) =exp v
1(4) = f exp(—Av?)dv > —— = j v? exp(—Av?) dv

0 dA 0
Let’s calculate I(A), put the one-dimensional integration info a two-dimensional
space, and use the polar coordinate

1(® 1
1) =5 j exp(~Av?)dv — 12(4) = 5 j

— 00

j N(v)dv =N - k =?
0

(0]

exp(—AvZ)dvj exp(—Av?)dv

1 (0.0) (0.0)

12(4) = 7 jr j exp(—Ax?) exp(—Ay?) dxdy
1 Egg _207?[ T r=00

1°(A) == j exp(—Ar?)rdfdr = —— exp(—Ar?)d(—Ar?)
4)y Jo 44 J—o

1
2

24) = 7= 1(4) = 5 (5)



5. DISTRIBUTION OF MOLECULAR
SPEED

Number of molecules as a funco;rion of speed: N(v)

N(v) = kv? exp(—mv?/2kgT) &J Nw)dv=N - k =?
0

1

*© 1 ,/m\2 - dl 1 [«

= — 2 = —|— - 2 — 2 = ——— = |—
I(A)—jO exp(—Av*)dv Z(A) —[o v-exp(—Av*) dv A= 1 /A?’

- J N(w)dv = kj v? exp(—mv?/2kgT) dv
0 0

L [gkgmirs o (m e
= = - ==
A m3 & 2kgT

o \3/2
27rkBT> v? exp(—mv?/2kgT)

N(v) = 4-7'[N<



5. DISTRIBUTION OF MOLECULAR
SPEED

The average speed of the gas molecules:

3/2
N®w) = 47‘[N< e ) v? exp(—mv?/2kgT)

2T[kBT

3/2
ZﬂkBT> jo v3 exp(—mv?/2kgT) dv

~ 1 m
Vavg =V = (V) = Nj vN(v)dv = 4~n
0

1(4) = jooexp(—sz)dv

co

© 1
f v3exp(—Av?) dv = —— | v?d[exp(—Av?)]
. 24

= [ —exp( sz)] — vexp(—sz) dv = — J dlexp(—Av?)] =

2A2 242

e = m3/2 1 _, (ks pT)Y/%  [8kgT
Va2 T Bk, T2 2(m 2k T)2 | © mt2mt/2 | m




5. DISTRIBUTION OF MOLECULAR
SPEED

The average kinetic energy of the gas molecules:

3/2
N(w) = 4-7'[N< ) v? exp(—mv?/2kgT)

2T[kBT

1 m \/? e
S 2| — 4 1s2
<2mv > 2nm<2nkBT> -[o v*exp(—mv</2kgT) dv

= 1 [T (*® 1
[(A) = —Ap? = — —’f 2 —Ap? N _ A~3/2
(4) Joexp( v°)dv Z/A Ovexp( v?) dv s
d

f v exp(—Av?) dv = (——)J v? exp(—Av?) dv
0 dA) )y

B 3 7'[1/2 A_5/2 B 37.[1/2
n 2] 4 ~ 8A45/2

L w2 = 2 m_\"*3n2 2kpT 5/2—3k T equipartition theo
2 MV T AT kT 8 \ m e SR ry



5. DISTRIBUTION OF MOLECULAR

SPEED

The distribution function:

3/2
N(v) = 4N <2nkBT> v2 exp(—mv?/2kgT)
dN (v
V=Ump
N(v)
2kgT 1.2x10%'}
Vimp = -
" m 1.0x 102"}
- 8.0x 102}
B [
(v) = — 6.0x 1020}
4.0x1o2°:—
3kgT -
Vrms = V(V?) = - 20!
m 2.0x 102}

kpT

)-o

1 mol N, molecules

500



5. DISTRIBUTION OF MOLECULAR
SPEED

Example: Nine particles have speeds of 5.0, 8.0, 12.0, 12.0, 12.0, 14.0, 14.0, 17.0,
and 20.0 m/s. (a) Find the average speed. (b) What is the rms speed? (c) What is

the most probable speed of the particles?

Distribution function
50+8.0+120%x34+14.0x2+17.0+ 20.0 4
(v) = = 12.7 (m/s) o
9
2 ®
_ 5.02 + 8.02 + 12.02 x 3 + 14.02 x 2 + 17.0%2 + 20.02 B 0
Vyms = 5 = 13.3 (m/s) 0 10 20 30

Ump = 12 (m/s)



5. DISTRIBUTION OF MOLECULAR
SPEED

Example: The law of atmospheres states that the number density of molecules in the atmosphere
depends on height y above sea level according to ny(y) = ngexp (—%’), where ng 1s the
Iy yny(y)dy

number density at sea level. Please calculate the average height ({y) = = 10 Oy ).
0

Let A = I(A) —f exp(—Ay)dy

dI(A) d «©
A —<—ﬁ) jo exp(—Ay)dy

_dI(4 ©/ d ®
d(A)— jo ( dA)(exp( —Ay))dy = JO y exp(—Ay)dy

d (0]
. <i> (In(1(4))) = — (m) UWD) [ yesp-ay)dy
dA - 1(A) a fooo exp(—Ay)dy




5. DISTRIBUTION OF MOLECULAR
SPEED

Example: The law of atmospheres states that the number density of molecules in the atmosphere

depends on height y above sea level according to ny(y) = ngexp (—%’), where ng 1s the
B
- d
number density at sea level. Please calculate the average height ({y) = foooynV(y) y).
Jo nv(¥ady

. —Ay)d d
(y) = Jo yew(z4y)dy = —(-) (In(1(4)))

- fooo exp(—Ay)dy dA
I(A) = JooeXp(—Ay)dy _ [_ exp(;A}’)] ~0 +l
0 0
In(1(4)) = —In(4)
() = - (%1) (~In(A)) =5 = % i = 8,901 ()




EXERCISE

In a cylinder, a sample of an i1deal gas with n moles undergoes an adiabatic process. (a) Starting with the
expression W = — [ PdV and using the condition PVY = const, show that the work done on the gas is W =

— (Pf Ve — P Vl-). (b) Starting with the first law of thermodynamics, show that the work done on the gas i1s
y—1
equal to ncy (T F— Tl-).

(a)
Vr Vi p,vY
W=—J PdV,PVV=PiViy—>W=—j = dv
Vi Vi 44
yr+11"s  pyY . B
W = —PiV-y DS (V v+l _ y+1)
v+, y-1VT :

Yy, —V+1 Yy, —Y+1




EXERCISE

In a cylinder, a sample of an i1deal gas with n moles undergoes an adiabatic process. (a) Starting with the
expression W = — [ PdV and using the condition PVY = const, show that the work done on the gas is W =

— (Pf Ve — P Vl-). (b) Starting with the first law of thermodynamics, show that the work done on the gas i1s
y—1
equal to ncy (T F— Tl-).

- PV =PV (coPeVy — coPiVy)
== -
1+-—=—1

v

CyNRTy — cynRT;
W = - =nc,(Tr — T;)




EXERCISE

Let us explore the inequality vy, > 14,4 for a two-particle gas. Let the speed of one particle be v; = avg,,
and the other particle have speed v, = (2 — a)v,,,. (a) Show that the average speed is v,,,4. (b) Show that
Vims = Vg (2 — 2a + a*). (c) Argue that, in general, V5 > V4. (d) Under what condition will vy, =

vavg 3

(a)
V1 = QVgpg, V2 = (2 — Q) Vgyg

Cavgygt+ (2 - vy
Vavg = 5 = Vavg

(b)

vZ + v2 a?vg,g + (4 — 4a + a?)vgy,
Urms = > - 2

Vins = (2 = 2a + a®)vg,,




EXERCISE

Let us explore the inequality vy, > 14,4 for a two-particle gas. Let the speed of one particle be v; = avg,,
and the other particle have speed v, = (2 — a)v,,,. (a) Show that the average speed is v,,,4. (b) Show that
Vims = Vg (2 — 2a + a*). (c) Argue that, in general, V5 > V4. (d) Under what condition will vy, =

vavg 3

(c)

Vins = (2 — 2a-+ aves

vrzms = ((a - 1%+ 1)vc%vg = vc%vg

(d)

a=1-v =V, = Vg
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