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Ideal gas model:

1. The number of molecules in the gas is large and the average separation among

molecules is large compared with their size.

2. Newton’s law of motion is strictly obeyed for each molecule, but molecules move

randomly.

3. The molecules interact only by short-range force during elastic collisions.

4. The molecules make elastic collisions with the walls.

5. The gas under consideration is a pure substance; that is, all molecules are identical.

𝑑 𝑚

Ԧ𝑣

N molecules in the cube of length d

each molecule has a mass of m and

velocity Ԧ𝑣 = 𝑣𝑥 Ƹ𝑖 + 𝑣𝑦 Ƹ𝑗 + 𝑣𝑧 ෠𝑘

use impulse to estimate the force on the walls, assume an

interval ∆𝑡 between successive collisions on the wall

1. MOLECULAR MODEL OF AN IDEAL 
GAS



Ideal gas model:
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Ideal gas model:

𝑃𝑉 = 𝑁
2

3

𝑚𝑣2

2
compare with𝑃𝑉 = 𝑁𝑘𝐵𝑇

𝑚𝑣2

2
=
3

2
𝑘𝐵𝑇

We will learn the concept later from the equipartition theory.

one degree of freedom: 
𝑚𝑣𝑥

2

2
=

1

2
𝑘𝐵𝑇

three degree of freedom: 
𝑚𝑣2

2
=

3

2
𝑘𝐵𝑇

The internal energy of an ideal gas: 𝐸𝑖𝑛𝑡 = 𝑁
𝑚𝑣2

2
=
3

2
𝑁𝑘𝐵𝑇

The root-mean-square speed of a molecule:

𝑣𝑟𝑚𝑠 = 𝑣2 =
3𝑘𝐵𝑇

𝑚
𝑣2 =

3𝑘𝐵𝑇

𝑚
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Example: Please calculate the root-mean-square speed of a hydrogen molecule at

room temperature.

𝑣𝑟𝑚𝑠 =1930 m/s

Example: A tank of volume 0.300 m3 contains 2.00 mole of helium gas at 20.0oC.

Assuming the helium behaves like an ideal gas,

(a)find the total internal energy of the gas.

(b)What is the root-mean-square speed of the helium atoms?

1. MOLECULAR MODEL OF AN IDEAL 
GAS

𝑣𝑟𝑚𝑠 =
3𝑘𝐵𝑇

𝑚
=

3𝑅𝑇

𝑀
,𝑀 = 0.002 𝑘𝑔, 𝑅 = 8.314

𝐽

𝑚𝑜𝑙 𝐾
, 𝑇 = 300 𝐾

𝑛 = 2.0 𝑚𝑜𝑙, 𝑇 = 200𝐶 = 293.15 𝐾

→ 𝐸 =
3

2
𝑛𝑅𝑇 =

3

2
2.00 8.314 293.15 = 7310 𝐽

𝑣𝑟𝑚𝑠 =
3𝑅𝑇

𝑀
=

3 8.314 293.15

0.004
= 1350 𝑚/𝑠



Equations for an ideal gas:

𝑃𝑉 = 𝑛𝑅𝑇 ∆𝑊 = −න𝑃𝑑𝑉 ∆𝐸𝑖𝑛𝑡 = ∆𝑄 + ∆𝑊 𝐸𝑖𝑛𝑡 =
3

2
𝑛𝑅𝑇

Molar specific heat at constant volume:

𝐶𝑉 =
∆𝑄

𝑛 ∆𝑇 𝑉=𝑉0
∆𝑉 = 0 → ∆𝑊 = 0, ∆𝐸𝑖𝑛𝑡 = ∆𝑄 𝐸𝑖𝑛𝑡 =

3

2
𝑛𝑅𝑇 → ∆𝐸𝑖𝑛𝑡 =

3

2
𝑛𝑅 ∆𝑇

𝐶𝑉 =
∆𝑄

𝑛 ∆𝑇
=

∆𝐸

𝑛 ∆𝑇
=
3𝑛𝑅 ∆𝑇 /2

𝑛 ∆𝑇
=
3𝑅

2

Molar specific heat at constant pressure:

𝐶𝑃 =
∆𝑄

𝑛 ∆𝑇 𝑃=𝑃0
∆𝑃 = 0 → ∆𝑊 ≠ 0 𝑃𝑉 = 𝑛𝑅𝑇 → 𝑃 ∆𝑉 = 𝑛𝑅 ∆𝑇

∆𝐸𝑖𝑛𝑡 =
3

2
𝑛𝑅 ∆𝑇 , ∆𝑄 = ∆𝐸 − ∆𝑊 = ∆𝐸 + 𝑃 ∆𝑉 

∆𝑄 =
3

2
𝑛𝑅 ∆𝑇 + 𝑛𝑅 ∆𝑇 → 𝐶𝑃 =

3
2
𝑛𝑅 ∆𝑇 + 𝑛𝑅 ∆𝑇

𝑛 ∆𝑇
= 𝐶𝑉 + 𝑅 =

5

2
𝑅
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The ratio of the two molar specific heats is defined: 𝛾 =
𝐶𝑃
𝐶𝑉

The specific heats of monatomic, diatomic, and triatomic gas:

𝑪𝑷(J/mol K) 𝑪𝑽(J/mol K) 𝑪𝑷 − 𝑪𝑽 𝜸 = 𝑪𝑷/𝑪𝑽

He 20.8 12.5 8.33 1.67≅ 5/3

H2 28.8 20.4 8.33 1.41≅ 7/5

CO2 37 28.5 8.5 1.31≅ 9/7

Example: A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.

(a) If the gas is heated at constant volume, how much energy must be

transferred by heat to the gas after it is heated to 500 K? (b) How much energy

must be transferred by heat to the gas at constant pressure?

2. MOLAR SPECIFIC HEAT OF AN 
IDEAL GAS

𝑛 = 3.00 𝑚𝑜𝑙, ∆𝑇 = 500 − 300 = 200 𝐾, 𝐶𝑉 = 3𝑅/2, 𝐶𝑃 = 5𝑅/2

𝑅 = 8.314
𝐽

𝑚𝑜𝑙 𝐾
∆𝑄𝑉 = 𝑛𝐶𝑉 ∆𝑇 = 3.00 3𝑅/2 200 = 7480 𝐽

∆𝑄𝑃 = 𝑛𝐶𝑃 ∆𝑇 = 3.00 5𝑅/2 200 = 12500 𝐽
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Adiabatic process: what is the P-V dependence?

∆𝑄 = 0 → ∆𝐸𝑖𝑛𝑡 = ∆𝑊 = −𝑃∆𝑉

𝐸𝑖𝑛𝑡 = 𝑛𝐶𝑉𝑇 → ∆𝐸𝑖𝑛𝑡 = 𝑛𝐶𝑉 ∆𝑇

𝑛𝐶𝑉 ∆𝑇 = −𝑃 ∆𝑉

𝑃𝑉 = 𝑛𝑅𝑇 → 𝑃 ∆𝑉 + 𝑉 ∆𝑃 = 𝑛𝑅 ∆𝑇

𝑃 ∆𝑉 + 𝑉 ∆𝑃 = 𝑛 𝐶𝑃 − 𝐶𝑉 ∆𝑇

𝑃 ∆𝑉 + 𝑉 ∆𝑃 = 𝐶𝑃 − 𝐶𝑉
−𝑃 ∆𝑉

𝐶𝑉

𝑃 ∆𝑉 + 𝑉 ∆𝑃 = 1 − 𝛾 𝑃 ∆𝑉 → 𝛾𝑃 ∆𝑉 + 𝑉 ∆𝑃 = 0

𝛾
𝑑𝑉

𝑉
+
𝑑𝑃

𝑃
= 0 → 𝛾 ln𝑉 − ln𝑉0 = − ln𝑃 + ln𝑃0 →

𝑉

𝑉0

𝛾

=
𝑃0
𝑃

→ 𝑃𝑉𝛾 = 𝑃0𝑉0
𝛾
= 𝑐𝑜𝑛𝑠𝑡

200 𝐾

300 𝐾

adiabatic

isothermal

𝑃 𝑉 =
𝑐

𝑉𝛾

3. ADIABATIC PROCESSES FOR AN 
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Example: The fuel-air mixture in the cylinder of a diesel engine at 20.0oC is

compressed from an initial pressure of 1.00 atm and volume of 800 cm3 to a volume

of 60.0 cm3. Assuming that the mixture behave as an ideal gas with 𝛾 = 1.4 and that

the compression is adiabatic, find the final pressure and temperature of the mixture.

In an adiabatic process, the P-V follows 𝑃𝑖𝑉𝑖
𝛾
= 𝑃𝑓𝑉𝑓

𝛾
.

3. ADIABATIC PROCESSES FOR AN 
IDEAL GAS

𝑃𝑖 = 1 𝑎𝑡𝑚, 𝑉𝑖 = 800 𝑐𝑚3, 𝑇𝑖 = 293.15 𝐾, 𝑉𝑓 = 60 𝑐𝑚3

𝑃𝑓 =
𝑃𝑖𝑉𝑖

𝛾

𝑉𝑓
𝛾 =

1.00 × 8001.4

60.01.4
= 37.6 𝑎𝑡𝑚

𝑇𝑖𝑉𝑖
𝛾−1

= 𝑇𝑓𝑉𝑓
𝛾−1

→ 𝑇𝑓 =
𝑇𝑖𝑉𝑖

𝛾−1

𝑉𝑓
𝛾−1 =

293.15 × 8000.4

60.00.4
= 826 𝐾



The theory of the equipartition of energy: In the equilibrium condition, each

degree of freedom contributes an average energy of 𝑘𝐵𝑇/2 per molecule.

Monatomic gas molecule: three degrees of freedom of translational motion

Diatomic gas molecule:

three degrees of freedom for translation motion

two degrees of freedom for rotational motion

two degrees of freedom for vibrational motion

𝑣𝑥

𝑣𝑦

𝑣𝑧

Molar specific heat of the diatomic gas system:

𝐶𝑉 =
3

2
𝑅, 𝐶𝑃 =

5

2
𝑅 for molecules only in translational motion

𝐶𝑉 =
5

2
𝑅, 𝐶𝑃 =

7

2
𝑅 for molecules in translational and rotational motion

𝐶𝑉 =
7

2
𝑅, 𝐶𝑃 =

9

2
𝑅 for molecules in translational, rotational, and vibrational 

motion

4. THE EQUIPARTITION OF ENERGY



𝐶𝑃 molar specific heat at constant pressure of normal

hydrogen molecules

𝐶𝑃 = 5𝑅/2 = 4.97 𝑐𝑎𝑙/𝑚𝑜𝑙 𝐾

𝐶𝑃 =
7𝑅

2
=

6.96 𝑐𝑎𝑙/𝑚𝑜𝑙 𝐾

𝐶𝑃 =
9𝑅

2
=

8.95 𝑐𝑎𝑙/𝑚𝑜𝑙 𝐾

300 K

U.S. Department of Commerce National Bureau of

Standards, V41, P379 (1948).

The temperature dependence implies the energy

quantization for rotational and vibrational motions.

It points out the difference between classical and

quantum statistics.

4. THE EQUIPARTITION OF ENERGY

∆𝐸𝑡𝑟𝑎𝑛𝑠 < ∆𝐸𝑟𝑜𝑡 < ∆𝐸𝑣𝑖𝑏
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Probability and statistics: distribution functions (the probability of the occurrence

times)

occurrence times of the ith event: 𝑛𝑖, σ 𝑛𝑖 = 𝑁

distribution function: 𝑓𝑖 = 𝑛𝑖/𝑁, σ𝑖=1
𝑚 𝑓𝑖 = 1

If the value of the ith event is 𝑠𝑖

the average value is 𝑠𝑎𝑣𝑔 = 𝑠 =
σ 𝑛𝑖𝑠𝑖
σ 𝑛𝑖

= σ
𝑛𝑖
𝑁
𝑠𝑖 = σ𝑓𝑖𝑠𝑖

the average of the square of the value is 𝑠2 𝑎𝑣𝑔 = 𝑠2 = σ𝑓𝑖𝑠𝑖
2

the root-mean-square of the value is 𝑠𝑟𝑚𝑠 = 𝑠2

the standard deviation is 𝜎 = 𝑠𝑖 − 𝑠 2 = 𝑠2 − 𝑠 2

Continuous distribution: 𝑓𝑖 → 𝑓 𝑥 , σ 𝑓𝑖 = 1 → 𝑓׬ 𝑥 𝑑𝑥 = 1

the value is also a function of 𝑥, 𝑠 𝑥

the average of the value is 𝑠 = ׬ 𝑠 𝑥 𝑓 𝑥 𝑑𝑥

5. DISTRIBUTION OF MOLECULAR 
SPEED

𝑠2 = න 𝑠 𝑥 2𝑓 𝑥 𝑑𝑥 , 𝑠𝑟𝑚𝑠 = 𝑠2 , 𝜎 = 𝑠2 − 𝑠 2



The occurrence probability of a molecule with kinetic energy 𝐸 

follows the Maxwell-Boltzmann distribution:

𝑃 𝐸 = 𝑐 exp −
𝐸

𝑘𝐵𝑇 𝑣𝑥

𝑣𝑦

In a two dimensional system, the number of molecules is

proportional to the ring area and the energy distribution function:

𝑃 𝐸 2𝜋𝑣𝑑𝑣, 𝐸 = 𝑚𝑣2/2

𝑣𝑥

𝑣𝑦

𝑣𝑧In a three dimensional system, the number 

of molecules is 𝑁 𝑣 𝑑𝑣 ∝ 4𝜋𝑣2𝑑𝑣 × exp −𝐸/𝑘𝐵𝑇

𝑁 𝑣 = 𝑘𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇

Normalize it by:

න
0

∞

𝑁 𝑣 𝑑𝑣 = 𝑁 → 𝑘 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3
2

5. DISTRIBUTION OF MOLECULAR 
SPEED



Mathematical methods:

Let’s calculate 𝐼 𝐴 , put the one-dimensional integration into a two-dimensional

space, and use the polar coordinate

5. DISTRIBUTION OF MOLECULAR 
SPEED

𝑓 𝑣 = exp −
𝑚𝑣2

2𝑘𝐵𝑇
, 𝑙𝑒𝑡 𝐴 =

𝑚

2𝑘𝐵𝑇
→ 𝑓 𝐴, 𝑣 = exp −𝐴𝑣2

𝐼 𝐴 = න
0

∞

exp −𝐴𝑣2 𝑑𝑣 → −
𝑑𝐼

𝑑𝐴
= න

0

∞

𝑣2 exp −𝐴𝑣2 𝑑𝑣

𝐼 𝐴 =
1

2
න
−∞

∞

exp −𝐴𝑣2 𝑑𝑣 → 𝐼2 𝐴 =
1

4
න
−∞

∞

exp −𝐴𝑣2 𝑑𝑣න
−∞

∞

exp −𝐴𝑣2 𝑑𝑣

𝐼2 𝐴 =
1

4
න
−∞

∞

න
−∞

∞

exp −𝐴𝑥2 exp −𝐴𝑦2 𝑑𝑥𝑑𝑦

𝐼2 𝐴 =
1

4
න
0

∞

න
0

2𝜋

exp −𝐴𝑟2 𝑟𝑑𝜃𝑑𝑟 = −
𝜋

4𝐴
න
𝑟=0

𝑟=∞

exp −𝐴𝑟2 𝑑 −𝐴𝑟2

𝐼2 𝐴 =
𝜋

4𝐴
→ 𝐼 𝐴 =

1

2

𝜋

𝐴

1
2

𝑁 𝑣 = 𝑘𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇 &න
0

∞

𝑁 𝑣 𝑑𝑣 = 𝑁 → 𝑘 =?



Number of molecules as a function of speed: 𝑁 𝑣

𝐼 𝐴 = න
0

∞

exp −𝐴𝑣2 𝑑𝑣 =
1

2

𝜋

𝐴

1
2
→ න

0

∞

𝑣2 exp −𝐴𝑣2 𝑑𝑣 = −
𝑑𝐼

𝑑𝐴
=
1

4

𝜋

𝐴3

→ න
0

∞

𝑁 𝑣 𝑑𝑣 = 𝑘න
0

∞

𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇 𝑑𝑣

= 𝑘
1

4𝜋

8𝑘𝐵
3𝜋3𝑇3

𝑚3 = 𝑁 → 𝑘 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑁 𝑣 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇

5. DISTRIBUTION OF MOLECULAR 
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𝑁 𝑣 = 𝑘𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇 &න
0

∞

𝑁 𝑣 𝑑𝑣 = 𝑁 → 𝑘 =?



The average speed of the gas molecules:

𝑁 𝑣 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇

𝑣𝑎𝑣𝑔 = ҧ𝑣 = 𝑣 =
1

𝑁
න
0

∞

𝑣𝑁 𝑣 𝑑𝑣 = 4𝜋
𝑚

2𝜋𝑘𝐵𝑇

3/2

න
0

∞

𝑣3 exp −𝑚𝑣2/2𝑘𝐵𝑇 𝑑𝑣

𝐼 𝐴 = න
0

∞

exp −𝐴𝑣2 𝑑𝑣

න
0

∞

𝑣3 exp −𝐴𝑣2 𝑑𝑣 = −
1

2𝐴
න
0

∞

𝑣2𝑑 exp −𝐴𝑣2

= −
𝑣2

2𝐴
exp −𝐴𝑣2

𝑣=0

𝑣=∞

+
1

𝐴
න
0

∞

𝑣 exp −𝐴𝑣2 𝑑𝑣 = −
1

2𝐴2
න

𝑣=0

𝑣=∞

𝑑 exp −𝐴𝑣2 =
1

2𝐴2

𝑣 = 𝑘
1

2𝐴2
= 4𝜋

𝑚3/2

𝜋3/2 2𝑘𝐵𝑇
3/2

1

2 𝑚/2𝑘𝐵𝑇
2 = 2

2𝑘𝐵𝑇
1/2

𝜋1/2𝑚1/2
=

8𝑘𝐵𝑇

𝜋𝑚

5. DISTRIBUTION OF MOLECULAR 
SPEED



The average kinetic energy of the gas molecules:

𝑁 𝑣 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇

1

2
𝑚𝑣2 = 2𝜋𝑚

𝑚

2𝜋𝑘𝐵𝑇

3/2

න
0

∞

𝑣4 exp −𝑚𝑣2/2𝑘𝐵𝑇 𝑑𝑣

𝐼 𝐴 = න
0

∞

exp −𝐴𝑣2 𝑑𝑣 =
1

2

𝜋

𝐴
,න
0

∞

𝑣2 exp −𝐴𝑣2 𝑑𝑣 =
1

4

𝜋

𝐴3
=
𝜋1/2

4
𝐴−3/2

= − −
3

2

𝜋1/2

4
𝐴−5/2 =

3𝜋1/2

8𝐴5/2

1

2
𝑚𝑣2 = 2𝜋𝑚

𝑚

2𝜋𝑘𝐵𝑇

3/2
3𝜋1/2

8

2𝑘𝐵𝑇

𝑚

5/2

=
3

2
𝑘𝐵𝑇 equipartition theory
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න
0

∞

𝑣4 exp −𝐴𝑣2 𝑑𝑣 = −
𝑑

𝑑𝐴
න
0

∞

𝑣2 exp −𝐴𝑣2 𝑑𝑣



1 mol N2 molecules

300 K

900 K

The distribution function:

𝑁 𝑣 = 4𝜋𝑁
𝑚

2𝜋𝑘𝐵𝑇

3/2

𝑣2 exp −𝑚𝑣2/2𝑘𝐵𝑇

𝑑𝑁 𝑣

𝑑𝑣
𝑣=𝑣𝑚𝑝

= 0 → 2𝑣𝑚𝑝 𝑒
−𝑚𝑣𝑚𝑝

2 /2𝑘𝐵𝑇 + 𝑣𝑚𝑝
2 𝑒−𝑚𝑣𝑚𝑝

2 /2𝑘𝐵𝑇 −
𝑚𝑣𝑚𝑝

𝑘𝐵𝑇
= 0

𝑣𝑚𝑝 =
2𝑘𝐵𝑇

𝑚

𝑣 =
8𝑘𝐵𝑇

𝜋𝑚

𝑣𝑟𝑚𝑠 = 𝑣2 =
3𝑘𝐵𝑇

𝑚

5. DISTRIBUTION OF MOLECULAR 
SPEED



Example: Nine particles have speeds of 5.0, 8.0, 12.0, 12.0, 12.0, 14.0, 14.0, 17.0,

and 20.0 m/s. (a) Find the average speed. (b) What is the rms speed? (c) What is

the most probable speed of the particles?

𝑣 =
5.0 + 8.0 + 12.0 × 3 + 14.0 × 2 + 17.0 + 20.0

9
= 12.7 (𝑚/𝑠)

𝑣𝑟𝑚𝑠 =
5.02 + 8.02 + 12.02 × 3 + 14.02 × 2 + 17.02 + 20.02

9
= 13.3 (𝑚/𝑠)

0

2

4

0 10 20 30

Distribution function

𝑣𝑚𝑝 = 12 (𝑚/𝑠)
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SPEED



Example: The law of atmospheres states that the number density of molecules in the atmosphere

depends on height y above sea level according to 𝑛𝑉 𝑦 = 𝑛0 exp −
𝑚𝑔𝑦

𝑘𝐵𝑇
, where 𝑛0 is the

number density at sea level. Please calculate the average height ( 𝑦 =
0׬
∞
𝑦𝑛𝑉 𝑦 𝑑𝑦

0׬
∞
𝑛𝑉 𝑦 𝑑𝑦

).
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SPEED

Let 𝐴 =
𝑚𝑔

𝑘𝐵𝑇
, 𝐼 𝐴 = 0׬

∞
exp −𝐴𝑦 𝑑𝑦

−
𝑑𝐼 𝐴

𝑑𝐴
= −

𝑑

𝑑𝐴
න
0

∞

exp −𝐴𝑦 𝑑𝑦

−
𝑑

𝑑𝐴
ln 𝐼 𝐴 =

−
𝑑
𝑑𝐴

𝐼 𝐴

𝐼 𝐴
=
0׬
∞
𝑦 exp −𝐴𝑦 𝑑𝑦

0׬
∞
exp −𝐴𝑦 𝑑𝑦

−
𝑑𝐼 𝐴

𝑑𝐴
= න

0

∞

−
𝑑

𝑑𝐴
exp −𝐴𝑦 𝑑𝑦 = න

0

∞

𝑦 exp −𝐴𝑦 𝑑𝑦



Example: The law of atmospheres states that the number density of molecules in the atmosphere

depends on height y above sea level according to 𝑛𝑉 𝑦 = 𝑛0 exp −
𝑚𝑔𝑦

𝑘𝐵𝑇
, where 𝑛0 is the

number density at sea level. Please calculate the average height ( 𝑦 =
0׬
∞
𝑦𝑛𝑉 𝑦 𝑑𝑦

0׬
∞
𝑛𝑉 𝑦 𝑑𝑦

).
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𝑦 =
0׬
∞
𝑦 exp −𝐴𝑦 𝑑𝑦

0׬
∞
exp −𝐴𝑦 𝑑𝑦

= −
𝑑

𝑑𝐴
ln 𝐼 𝐴

𝐼 𝐴 = න
0

∞

exp −𝐴𝑦 𝑑𝑦 = −
exp −𝐴𝑦

𝐴
0

∞

= 0 +
1

𝐴

𝑦 = −
𝑑

𝑑𝐴
− ln 𝐴 =

1

𝐴
=
𝑘𝐵𝑇

𝑚𝑔

1.38×10−23∙300
0.028

6.02×1023
∙10

= 8,901 (m)

ln 𝐼 𝐴 = − ln 𝐴



EXERCISE
In a cylinder, a sample of an ideal gas with 𝑛 moles undergoes an adiabatic process. (a) Starting with the 

expression 𝑊 = 𝑃𝑑𝑉׬− and using the condition 𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡, show that the work done on the gas is 𝑊 =
1

𝛾−1
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖 . (b) Starting with the first law of thermodynamics, show that the work done on the gas is 

equal to 𝑛𝑐𝑉 𝑇𝑓 − 𝑇𝑖 .

𝑊 = −න
𝑉𝑖

𝑉𝑓

𝑃𝑑𝑉 , 𝑃𝑉𝛾 = 𝑃𝑖𝑉𝑖
𝛾
→ 𝑊 = −න

𝑉𝑖

𝑉𝑓 𝑃𝑖𝑉𝑖
𝛾

𝑉𝛾
𝑑𝑉

𝑊 = −𝑃𝑖𝑉𝑖
𝛾 𝑉−𝛾+1

−𝛾 + 1
𝑉𝑖

𝑉𝑓

=
𝑃𝑖𝑉𝑖

𝛾

𝛾 − 1
𝑉𝑓
−𝛾+1

− 𝑉𝑖
−𝛾+1

𝑊 =
𝑃𝑖𝑉𝑖

𝛾
𝑉𝑓
−𝛾+1

− 𝑃𝑖𝑉𝑖
𝛾
𝑉𝑖
−𝛾+1

𝛾 − 1

(a)

𝑊 =
𝑃𝑓𝑉𝑓

𝛾
𝑉𝑓
−𝛾+1

− 𝑃𝑖𝑉𝑖
𝛾
𝑉𝑖
−𝛾+1

𝛾 − 1
=
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖

𝛾 − 1



EXERCISE
In a cylinder, a sample of an ideal gas with 𝑛 moles undergoes an adiabatic process. (a) Starting with the 

expression 𝑊 = 𝑃𝑑𝑉׬− and using the condition 𝑃𝑉𝛾 = 𝑐𝑜𝑛𝑠𝑡, show that the work done on the gas is 𝑊 =
1

𝛾−1
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖 . (b) Starting with the first law of thermodynamics, show that the work done on the gas is 

equal to 𝑛𝑐𝑉 𝑇𝑓 − 𝑇𝑖 .

(b)

𝑊 =
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖

𝛾 − 1
𝛾 =

𝑐𝑣 + 𝑅

𝑐𝑣
= 1 +

𝑅

𝑐𝑣

𝑊 =
𝑃𝑓𝑉𝑓 − 𝑃𝑖𝑉𝑖

1 +
𝑅
𝑐𝑣
− 1

=
𝑐𝑣𝑃𝑓𝑉𝑓 − 𝑐𝑣𝑃𝑖𝑉𝑖

𝑅

𝑊 =
𝑐𝑣𝑛𝑅𝑇𝑓 − 𝑐𝑣𝑛𝑅𝑇𝑖

𝑅
= 𝑛𝑐𝑣 𝑇𝑓 − 𝑇𝑖



EXERCISE
Let us explore the inequality 𝑣𝑟𝑚𝑠 > 𝑣𝑎𝑣𝑔 for a two-particle gas. Let the speed of one particle be 𝑣1 = 𝑎𝑣𝑎𝑣𝑔
and the other particle have speed 𝑣2 = 2 − 𝑎 𝑣𝑎𝑣𝑔. (a) Show that the average speed is 𝑣𝑎𝑣𝑔. (b) Show that 

𝑣𝑟𝑚𝑠
2 = 𝑣𝑎𝑣𝑔

2 2 − 2𝑎 + 𝑎2 . (c) Argue that, in general, 𝑣𝑟𝑚𝑠 > 𝑣𝑎𝑣𝑔. (d) Under what condition will 𝑣𝑟𝑚𝑠 =

𝑣𝑎𝑣𝑔.

(a)

𝑣1 = 𝑎𝑣𝑎𝑣𝑔, 𝑣2 = 2 − 𝑎 𝑣𝑎𝑣𝑔

(b)

𝑣𝑟𝑚𝑠 =
𝑣1
2 + 𝑣2

2

2
=

𝑎2𝑣𝑎𝑣𝑔
2 + 4 − 4𝑎 + 𝑎2 𝑣𝑎𝑣𝑔

2

2

𝑣𝑟𝑚𝑠
2 = 2 − 2𝑎 + 𝑎2 𝑣𝑎𝑣𝑔

2

𝑣𝑎𝑣𝑔 =
𝑎𝑣𝑎𝑣𝑔 + 2 − 𝑎 𝑣𝑎𝑣𝑔

2
= 𝑣𝑎𝑣𝑔



EXERCISE
Let us explore the inequality 𝑣𝑟𝑚𝑠 > 𝑣𝑎𝑣𝑔 for a two-particle gas. Let the speed of one particle be 𝑣1 = 𝑎𝑣𝑎𝑣𝑔
and the other particle have speed 𝑣2 = 2 − 𝑎 𝑣𝑎𝑣𝑔. (a) Show that the average speed is 𝑣𝑎𝑣𝑔. (b) Show that 

𝑣𝑟𝑚𝑠
2 = 𝑣𝑎𝑣𝑔

2 2 − 2𝑎 + 𝑎2 . (c) Argue that, in general, 𝑣𝑟𝑚𝑠 > 𝑣𝑎𝑣𝑔. (d) Under what condition will 𝑣𝑟𝑚𝑠 =

𝑣𝑎𝑣𝑔.

(c)

𝑣𝑟𝑚𝑠
2 = 2 − 2𝑎 + 𝑎2 𝑣𝑎𝑣𝑔

2

(d)

𝑎 = 1 → 𝑣1 = 𝑣2 = 𝑣𝑎𝑣𝑔

𝑣𝑟𝑚𝑠
2 = 𝑎 − 1 2 + 1 𝑣𝑎𝑣𝑔

2 ≥ 𝑣𝑎𝑣𝑔
2
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