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1. MOTION OF AN OBJECT
ATTACHED TO A SPRING

"A"‘
AN/ Y

7
Hook’s Law - restoring force é 30000900,

F = —kxi

Newton’s 2nd Law, the block of mass m is reacting to the
external, restoring force by the spring.
ﬁ=m&=mdv—m£—m£l—>mi=—kx
dt dt? dt? dt?
When the block is acted by a linear restoring force, its motion follows a
special oscillatory motion called simple harmonic motion (SHM).

The linear restoring force (F = —kx) gives the block in oscillation about the
equilibrium position.
kx

a=——
m



2. SIMPLE HARMONIC MOTION

The force equation and the differential equation of the SHM:

d?x " d?x R k 0
m—s=—kx >—+—x=
dt? dt? m e -

2 dZX 2 : l’l e E
Let w- = k/m P + wex = 0 i:f \\I

Guess an oscillatory function: x(t) = A cos(Bt + ¢)

dx(t) d?x(t) N .

— 1 _ 2 1 “a . 1

I AB sin(Bt + ¢) 7 = —AB* cos(Bt + ¢) e e

d*x 2 2 2 I I
712 + w*x =0 > —AB“ cos(Bt + ¢) + w“Acos(Bt + ¢) =0

Acos(Bt+ ¢) (w?—B?*)=0->B=w
x(t) = Acos(wt + @)

angular speed: w =/ k/m,
phase constant: ¢,

eriod of time: T = 2nym/k
p / https://giphy.com/gifs/motion-wK9FIW8sSRKRW



2. SIMPLE HARMONIC MOTION

The velocity and acceleration of the block

x(t) = Acos(wt + ¢) —» v(t) = —wAsin(wt + ¢)
- a(t) = —w?A cos(wt + @)

Giving the initial condition to evaluate the two parameters 4, ¢
1. Attime t =0, x(0) = xy, v(0) =0
Acosp = x5, —wAsing =0
¢ =0,4=xy - x(t) = xycos(wt), v(t) = —wxy sin(wt)
2. Attimet =0, x(0) = 0, v(0) = v,
Acos¢p = 0,—wAsin¢p = v,

., U __Y T
qb—z,A— w—>x(t)— wcos(wt+2)
Vo

x(t) = —cos (g — a)t) — %sin(wt) v(t) = vy cos(wt)



2. SIMPLE HARMONIC MOTION

Example: A block with a mass of 200 g 1s connected to a light horizontal spring of force constant
5.0 N/m and 1s free to oscillate on a horizontal, frictionless surface.

(a) If the block is displaced 5.0 cm from equilibrium and released from rest, find the period of its
motion. (b) Determine the maximum speed and the maximum acceleration of the block.

m=0.20kg,k =50N/m

w? =—=25->w="5.0rad/s
m
a 2
| )T=—n=1.35 t=0,x(t=0)=xy=50cm=0.050m
W

(B) x(¢) = Xo cos(wt) = 0.050 cos(5.0t)
v(t) = —0.25sin(5.0t) Vmax = 0.25m/s

a(t) = —1.3cos(5.0t) apg, = 1.3 m/s?



2. SIMPLE HARMONIC MOTION

Example: Suppose that the 1nitial position x; and the 1nitial velocity v; of a harmonic
oscillator of known angular frequency w are given: that is x(0) = x;, v(0) = v;. Find

general expression for the amplitude and the phase constant in terms of these initial
parameters.

typical positional function: x(t) = A cos(wt + ¢)
v(t) = —wAsin(wt + ¢)

the initial conditions give: x; = Acos ¢ ,v; = —wAsin ¢

() = am i+ ()

Vi _1 Vi
x—=—a)tan¢—>q§=tan (— )
i

wXi

2




2. SIMPLE HARMONIC MOTION

Example: A block attached to a spring oscillates vertically with a frequency of 4.0 Hz
and an amplitude of 7.0 cm. A tiny bead 1s placed on top of the oscillating block just as
it reaches its lowest point. Assume that the bead’s mass 1s so small that its effect on the
motion of the block is negligible. At what distance from the block’s equilibrium

position does the bead lose contact with the block? -

w=2nf =4X2mr=25rad/s

the gravitational acceleration g helps to place the
bead on top of the block, if the restoring force gives
an downward acceleration larger than g, the bead
starts to leave the block

the acceleration of the block: ma = kx - a = %x = WX

aZg—>w2xZg—>x2§—>x20.016m

At a height of 1.6 cm above the equilibrium position of the spring-block system
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3. ENERGY OF A SIMPLE HARMONIC

OSCILLATOR

Start from a positional function x(t) = A cos(wt + ¢)

v(t) = —wAsin(wt + ¢)

The kinetic energy as a function of time:

1 1
K= Emv(t)2 — Emszz sin?(wt + ¢)

The potential energy as a function of time:
1 1

U= Ekx(t)2 =5 kA? cos?(wt + ¢)

The net mechanical energy:

1
E=K+U=Ema)

1 1 1 k
Emv2 +Ekx2 =§kA2 — p? =E(A2 —x%) 5 v =4wy A% — x?2

1 1
2A% sin®(wt + ¢) + > kA? cos?(wt + @) = > kA?

—-——
- =

-
e e -

https://giphy.com/gifs/motion-wK9FIW 8 SRKRW



3. ENERGY OF A SIMPLE HARMONIC
OSCILLATOR

Example: A 0.50 kg object connected to a massless spring of force constant 20 N/m
oscillates on a horizontal, frictionless track. (a) Calculate the total energy of the system
and the maximum velocity of the object if the amplitude of the motion is 3.0 cm. (b)
What 1s the velocity of the object when the position 1s equal to 2.0 cm?

A=3.0cm =0.030m

() 1, 1 ,

E= EkA = 5(20)(0.030) = 0.0090J

1

Emvﬁwx =E > Upgy = /2E/m = /2 x 0.0090/0.50 = 0.19 m/s

B v = +/k/mJ(A%2 —x2) = +6.3 X 0.022 = +0.14 m/s




3. ENERGY OF A SIMPLE HARMONIC
OSCILLATOR

The potential function, the kinetic energy, \
and the total energy

General motion near equilibrium, for example,
the Lenard-Jones potential energy 2 1




4. SIMPLE HARMONIC OSCILLATOR
VERSUS UNIFORM CIRCULAR MOTION

Polar coordinate

0 =wt+ ¢

7(t) = r cos(wt + ¢p) i + rsin(wt + @) J

v(t) = —wrsin(wt + ¢) T + wr cos(wt + ¢p) |

a(t) = —w?r cos(wt + ¢) i — w?r sin(wt + ¢P) |

x(t) = r cos(wt + ¢)
v, (t) = —owr sin(wt + ¢)
a,(t) = —w?r cos(wt + ¢)




5. THE PENDULUM

Pendulum

restoring force: F = —mg sin 8

: ) d?s a0
Newton's law: F = ma = m— = mL —
dt? dt?

The force EQ (differential EQ):

dz0 _ d?0 g
mLF = —mg sin 0 HW+Zsm9 =0

If the angle 6 is small enough, the differential equation is

f——_——

0 99— twitht + £ —
TR L compdare It wi qi2 + mX =

L
L g




5. THE PENDULUM

Physical Pendulum

restoring torque: Tt = —Lmg sin 8

Newton's low: 1t = la = I%

The torque EQ (differential EQ):
d?6 d?0 Lmg

1F=—ngsin9—>dt2+ 7 sinf =0

If the angle 6 is small enough, the differential equation is

d?0 Lmg d’x k
=0 compareitwith—+—x=0
dt2+ I 7= P dt2+mx
Lm I
B | o

I Lmg



5. THE PENDULUM

Example: A man enters a tall tower and he wants to measure its height. He puts a long
pendulum extending from the ceiling almost to the floor and he measures a period of 12
s. How tall 1s the tower?

4R,
dt2 L~

L
T=27t\/;=12—>L=g(12/2n)2=36m




5. THE PENDULUM

Example: A circular sign of mass M and radius R 1s hung on a nail from a small loop
located at one edge. After it 1s placed on the nail, the sign oscillates 1n a vertical plane.
Find the period of oscillation if the amplitude 1s small.

3
L, = Icom + MR? = —MR2

., ., [3MR2/2 _
" lRmg — RMg "




5. THE PENDULUM

Example: A rigid object suspended by a wire attached at the top to a fixed support.
Assume that the inertia of momentum is I. When the object is twisted through some
angle 0, the twisted wire exerts on the object a restoring torque that is proportional to
the angular position. That 1s, T = —k68, where k 1s called the torsion constant of the
support wire. Find the period of oscillation.

- i

e :
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0. DAMPED OSCILLATION

The external force:

F=—kx —bv
Newton’s 2"d Law:

F =ma F,
The force equation (differential equation):

ma = —kx — bv

% k=0
Y dt T T

Guess solution: x(t) = Ae™

ma®Ae® + bade™ + kAe® = 0 - (ma? + ba + k)Ae® =0

—b + Vb2 — Amk —b+/b2—4mk, ~b—VbZ—amk,
a= x(t) = Aje 2m + Aye 2m

2m



0. DAMPED OSCILLATION

Overdamped oscillation: b*> — 4mk > 0

2 2

Critically damped oscillation: b? — 4mk = 0

x(t) = Aje 2m*

Underdamped oscillation: b?> — 4mk < 0

) 5o -

x(t) = e72m' (A eT0t + A ei0t)

x(t) = e_%tA sin(wt + ¢)



/. FORCED OSCILLATION

The external force: F, sin(wt)
F = —kx — bv + F, sin(wt)
The force equation (differential equation):
ma = —kx — bv + F, sin(wt)
d’x  dx _
mﬁ -+ ba + kx = Fy sin(wt)

Guess solution: x(t) = Asin(wt + ¢)

(k — mw?)Asin(wt + @) + wbA cos(wt + ¢) = F, sin(wt)

(k — mw?)A cos ¢ sin(wt) + (k — mw?)A sin ¢ cos(wt)
+wbA cos ¢ cos(wt) — wbA sin ¢ sin(wt) = F, sin(wt)

k b
- 2Y ¢j — 2 )i — i —
(k — mw*)sin¢ wb cos p — (a) )smqﬁ W—COoS ¢



/. FORCED OSCILLATION

A((k — mw?) cos ¢ sin(wt) — wb sin ¢ sin(a)t)) = F, sin(wt)

k ° (bw\’ X o w2 F,

<——w2> +<—> A 1 cos¢ + m sin ¢ =2

- " k k bw\? =
( (-e?) + ()

2 2
bw

"2 bw

m a)) +(m>

2 2
\/(% — a)2> + (%) A(cos? ¢ + sin? ¢) = %




EXERCISE

A ball of mass m is connected to two rubber bands of length L, each under tension T'. The ball 1s displaced by a
small distance y perpendicular to the length of the rubber bands. Assuming that the tension does not change,
please calculate the restoring force and the angular frequency for this system in simple harmonic motion.

Y Y

N

F, = 2T sin(8) = 2T

. : B . y
The force equation gives F = ma = —2T N

d*y  d’ y
== —= +2T——==0
Tz "Mt [12 ¥ y2
d*y 2T S 2 2T
y<LL-m +—y=0-ow'=—>ow= |[—

dt? L



EXERCISE

A block of mass m is connected to two springs of force constants k; and k, in two ways as shown in the figure.
In both cases, the block moves on the frictionless table after it is displaced from equilibrium and released. Show

that in the two cases the block exhibits simple harmonic oscillation with periods (a) T = 2mym(k; + k;) /k,k,
and (b) T = 27T\/m/(k1 + k).

a. The same F, F = kyx; = kyXy = Keprx;

Total elongation x; = x1 + X,

F = keffxt — keff(xl + Xz) B
F F 1
F=keff<—+—)—’keff= - 4
ki ks 1 1 .
7 bl
T kik;
T ™ ey + ke L3
m m(k,y + k
= s = 21 Uy 2)
Kegr kik



EXERCISE

A block of mass m is connected to two springs of force constants k; and k, in two ways as shown in the figure.
In both cases, the block moves on the frictionless table after it is displaced from equilibrium and released. Show

that in the two cases the block exhibits simple harmonic oscillation with periods (a) T = 2mym(k; + k;) /k,k,
and (b) T = 27T\/m/(k1 + k).

b. The same elongation, x; = x, = x

Total force F; = F; + F,
F=F +F, =k,rrx

1 2 eff | kl kQ
k1x1 i kzXz = keffx - keff = kl i kz

T =2 = 2 = =
= 27T = 21
kers ki +k;




EXERCISE

A smaller disk of radius r and mass m is attached rigidly to the face of a second larger disk of radius R and
mass M. The center of the small disk 1s located at the edge of the large disk. The large disk is mounted at its
center on a frictionless axle. The assembly is rotated through a small angle 8 from its equilibrium position and
released. (a) Please calculate the speed of the center of the small disk as it passes through the equilibrium
position. (b) Please calculate the period of the motion.

Calculate the moment of nertia about the axle:

MR?
IM,axle - 2
mr? mr? ,
Imem = 5 = I axie = > + mR
MR? mr? :
ItOtCll = + + mR

2 2



EXERCISE

A smaller disk of radius r and mass m is attached rigidly to the face of a second larger disk of radius R and
mass M. The center of the small disk 1s located at the edge of the large disk. The large disk is mounted at its
center on a frictionless axle. The assembly is rotated through a small angle 8 from its equilibrium position and
released. (a) Please calculate the speed of the center of the small disk as it passes through the equilibrium
position. (b) Please calculate the period of the motion.

Change the potential energy to rotational energy:

2

1 1 v
mg(1 — cos(6))R = E Itotal(i)2 — E Ltotal (E)

. 2mgR(1 — cos(0))

MR?2 mr? .
5 + 5 + mR

2:

gR(1 — cos(6))




EXERCISE

A smaller disk of radius r and mass m is attached rigidly to the face of a second larger disk of radius R and
mass M. The center of the small disk 1s located at the edge of the large disk. The large disk is mounted at its
center on a frictionless axle. The assembly is rotated through a small angle 8 from its equilibrium position and
released. (a) Please calculate the speed of the center of the small disk as it passes through the equilibrium
position. (b) Please calculate the period of the motion.

The torque equation 1s:

Itotar@ = —R - mg - sin(6)

MR2+mr2+ R? d20+ R sin(6) = 0
> > m e mgnm sin =

Small angle approximation gives:

(MRZ + g + R2> dag + mgRO = 0 W = b
m — + mgRO = — 2 2
2 2 dt? Mé? + 2 4 mR?
V
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