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1. LINEAR MOMENTUM AND ITS
CONSERVATION

Start from Newton's 3@ Law, Action and Reaction Force
If there are no external force acting on the system,

> > system
z Fi,external = Fnet,external =0
1
m
Fip=—Fy Wy [ +F,=0 13’2{;:
dﬁl dﬁz 1 132
mlal + mzaz =0 ‘ mq dt + m dt =0 Tn’ljz"

o [m,V; + myv,] =0

Note that the variation of the vector sum of m;v; is zero. Its shows the
iImportance of mass and velocity.

Here we define the linear momentum: p = mv

d

—|[p1 + P2l =0
dt[pl 23



1. LINEAR MOMENTUM AND ITS
CONSERVATION

Characteristic of Linear Momentum
1. Separated to components

P = pxl + pyf + Dk = m¥ = mud + my,j + mvk

2. Related to the external force
N dv

dt

if the mass m is constant

In the following studies, we will find that the change of mass,
even without any changes of velocity, needs external forces.



1. LINEAR MOMENTUM AND ITS
CONSERVATION

system
If the system of two particles is isolated (without external :
forces) m(
= d - - d - ﬁ =
Fextnet =0 = a (p1 +p2) = aptotal “ K{Vﬁz

APiotar = 0 = Drotqr = constant_vector

P1i + D2i = P1f + Do f
Separated fo components:
Pixi t P2xi = Pixf + P2xf

P1yi T P2yi = P1yf T D2yf

P1zi T P2zi = P1zf T P2zf

It can also be used when one component of the force is
zero, forexample, Fy ext = 0 = piy + Paxi = Prxs + Poxy



1. LINEAR MOMENTUM AND ITS
CONSERVATION

Example: A man of mass 60.0 kg stands on frictionless ice surface and he throws a
baseball of 150 g horizontally at a speed of 150 km/h. What is his speed after throwing
the baseball.

Pman,i t Pbait,i = Pman,f T Phallf

0+ 0=60v+0.15X%x 150/3.6
v =—0.104(m/s)

https://giphy.com/gifs/justin-g-snow-cold-sad-john-xTcnTehwgRcbgymhTW



1. LINEAR MOMENTUM AND ITS
CONSERVATION

Example: A man of mass 75 kg is jumping up against the ground at a speed of 4.85 m/s,
where the mass of the Earth is 5.97X10%* kg. What’s the ratio of linear momentum
between the Earth and the man when the man is jumping up? What’s the ratio of kinetic
energy between the Earth and the man?

Pman,i T PEarth,i = Pman,f T PEarthf

|pEarth,f| .

0+0=75%x485+597x10%* xv =1
|pman,f|
v = 6.09 X 10723 (m/s)
24 —23)2
W sasitin B 5.97 X 10%* X (6.09 X 1074°) i — Moan

Eman,f 75 X (485)2 MEgarth




2. IMPULSE

The short fime action of forces:
. dp 5 Z 7 o
z Fi=— =) dp ( F l) dt o Ap = FretextAt

We define the short time action of forces as an impulse

R R ti+At .
i = ZFi At=f 21«} dt Fret
ti

- Fay
i g
etavg — A_t

;m

I'=Ap =pr—p;




2. IMPULSE

Example: In a crash test, an automobile of mass 1500 kg collides with a wall. The
initial and final velocities of the automobile are v; =-15 m/s and v, = 2.6 m/s. If the
collision lasts for 0.15 s, find the impulse due to the collision and the average force
excerted on the automobile.

I =pr—p; =1500 % 2.6 — 1500 x (—=15) = 2.64 x 10* (kg m/s)

2,64 % 10*

Favg = 0.15

= 1.76 x 105(N)

hitps://www.nytimes.com/2014/01/22/automobiles/minicars-are-worst-
Nnerformers-in-small-overlap-front-crash-tes<t html
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3. COLLISION IN ONE DIMENSION

A collision is an isolated event in which two or more objects (the colliding
objects) exert relatively strong forces on each other for a short fime.

The collision do not need a real touch since the force is acting at a distance.

Rules:
1. The linear momentum must be conserved no maftter that
the collision is either elastic or inelastic.

2. For elastic collisions, the total kinetic energy must be
conserved. For inelastic collisions, the total kinefic
energy of the system is not conserved.



3. COLLISION IN ONE DIMENSION

Perfectly Inelastic Collision:

Pixi T P2xi = Pixr T D2xf

mlvl + mzvz - mlv, + mzv,

= miv; + myv,

m; +m,




3. COLLISION IN ONE DIMENSION

Elastic Collision:

mvy + myv, = mlvi + mz’Ué -_._’"." """"""""
my(vy —v)) =my(vy —v,)  peemeeeeeee- ®e---
1 1 1 1 5 o -

§m17712 +§m2v22 = Emlviz +Em2v§2 C--o—

my (v + vy — 1) = my(vy + 1) (v —vy)

v, +v; =v, +vy

myv; + myv, = myv; + myv, (1)

V] —Vy =V, — Vg (2)



3. COLLISION IN ONE DIMENSION

Elastic Collision: I P —
m —m 2m, e O - __
vl = 1 2171 = v, -@s-
my; +m; m+m; — @¢-o>
p mo — My 2m1
Uy, = (%) (%1
mq + my mq + my

Special Case for Elastic Collision - v, =0
m; —mj

VG =———1"
L m1+m2

2m1

<
N
I

— .,
myq + m,



3. COLLISION IN ONE DIMENSION

, my—my, ! 2m4
VW =——"V Vp=————1;
m1+m2 m1+m2

Special Case for Elastic Collision - v, = 0, EQual Mass: m; = m,
vy =0 Uy =1y m
Special Case for Elastic Collision - v, = 0, Massive Target: m; K m,

I__ !/ _Zml
V1 = —1" Vp =—7""
m;

Special Case for Elastic Collision - v, = 0, Massive Projectile: m; > m,

V1 =V vy =2V, uq1 =5.0 uz =0.0

Ll T}

| vy = 4.999

o

=
vz = 0.009




3. COLLISION IN ONE DIMENSION

Example: Two metal spheres, suspended by vertical cords, initially just touch. Sphere 1,
with mass m, 1s pulled to the left to height h;, and then released from rest. After
swinging down, it undergoes an elastic collision with Sphere 2 of mass m,. What 1s the
velocity v’ of Sphere 1 just after the collision?

Energy transfer for my:
2

mqvq
myghy = > V1 =+/2ghy
Collision at bottom: v; = +/2ghy, v, =0 }

myv; + myvy = myvy

v —v, =0—14

mq —my mq —my

14

v = T \2gh
1 my, +m, 1 gnq




3. COLLISION IN ONE DIMENSION

Example: A block of mass m;=1.60 kg initially moving to the right with a speed of 4.00
m/s on a frictionless horizontal track collides with a spring attached to a second block
of mass m,=2.10 kg initially moving to the left with a speed of 2.50 m/s. The spring
constant 1s 600 N/m. (a) Find the velocities of the two blocks after the collision. (b)
During the collision, at the instant Block 1 1s moving to the right with a velocity of
+3.00 m/s, determine the velocity of Block 2. (¢) Determine the distance the spring is
compressed at that instant.

(@) m, =1.60, v; = 4.00, m, = 2.10, v, = —2.50
1.60v) + 2.10v5 = 1.60 X 4.00 + 2.10 x (—2.50) = 1.15
vy — vy = (—=2.50) — 4.00 = —6.50
v; = —3.38, v, = 3.12

(b) 1.60 x 3.00 + 2.10v), = 1.15 ==y v; = —1.74

(C)  600x2 N 1.60(4.00)> N 2.10(—2.50)%2 1.60(3.00)% 2.10(—1.74)%
L 2 2 2 2
x =0.173 (m)




3. COLLISION IN ONE DIMENSION

Example: The ballistic pendulum is used to measure the speed of a bullet. A bullet of

can we determine the speed of the bullet from a measurement of h?

mass m 1is fired into a large block of wood of mass M suspended from some light wires.
The bullet imbeds 1n the block, and the entire system swings through a height h. How

The speed after collision:

+ M
(mz )v’z =(m+M)gh= v' =./2gh s

The collision:

mvy + 0= (m+ M)\/2gh

vV 2gh

_(m+M)
. m

41




4. COLLISION IN TWO DIMENSIONS

Conservation of Linear Momentum p; + p2 = p1 + P2
Expressed in Components Pix + Pax = Pix + Pox Py + P2y = P1y T+ P2y
Conservation of Energy K, + K, = K{ + K,
r 2 2 2 2 2 r 2 ;2 ;2 ;2
+ + + +
+ + b2 P1x ply n P2x pZy . P1x ply n DP2x pZy

2 2 12
P1 b2 _ D1
2m1 2m2 2m1 Zmz 2m1 zmz 2m1 2m2

o
-

Simplified Example:

myv; = mqv; cos 6 + m,v, cos ¢ . B - ! -----------------

my vy Sin @ = m,v; sin ¢

1 1 1
2 12 [2
m vy = —-—mv +—-—m-v
2 171 T 2 472

https://en.wikipedia.org/wiki/Elastic_collision#/media/File::Elastischer_sto%C3%%F_2D.gif



4. COLLISION IN TWO DIMENSIONS

Example: A proton collides elastically with another proton that is initially at rest. The
incoming proton has an initial speed of 3.5x10° m/s and makes a glancing collision
with the second proton. After collision, one proton moves off at an angle of 37° to the
original direction of motion, and the second deflects at an angle of ¢ to the same axis.
Find the final speeds of the two protons and the angle ¢.

mv = mvj cos 37° + mv} cos ¢ v cos ¢ = v — vy cos 37° o7 2 / 0 12
v, =v°—2vvycos37° + 13

. c V' f — a9/ &% 0
muv; sin37° = mv)} sin ¢ v, sin ¢ = v; sin 37
2 2 2 2
mv? = mv;° +mvy" v —v° = v,

v2 —p!% = p2 = 2uv) cos 370 + v)? EE)  2v](v] —vcos37%) =0

v; = vcos37% = 3.5 X 10> x cos 37° = 2.80 x 10°(m/s)

2 . . .
v2 —v;” = vsin37° sin ¢ = cos 37° = sin 53¢

vy
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5. THE CENTER OF MASS

The COM of Two Parficles, my, x;, m,, x,

myxq + myx,

Xcom =
m; +m,

The COM of More Than Two Por’ricles Mo

mixq, + myx, + mgxz +
Xcom = m;X;

m; +m, + myg +

The COM of Many Particles in Three D|men5|ons

> m1r1 + m,7, + mars + z mi,
=
S m; +m, + my + M




5. THE CENTER OF MASS

Example: In the figure, it shows a uniform metal plate P of radius 2R from which a disk

of radius R has been stamped out in an assembly line. Using the xy coordinate system
shown to locate the center of mass of the plate.

Assume that the mass of the circular
disk of radius R is m and the big one
has mass 4m.

4m><0+(—m)><(—R)_R

Xcom = 4m + (—m) 2




5. THE CENTER OF MASS

The COM of a Body of Continuous Mass Distribution
y L[ P = J Fdv
TYcom = Mj rdM M = pV, dM = pdV COM v
Expressed in x, y, zComponents:

1 1 1
XcoMm = Mj xdM YcoM = ijdM ZcoM = M zdM

1 1 1
XcoM = vj xdV Ycom = Vf ydVv ZcomM = v zdV



5. THE CENTER OF MASS

Example: Show that the center of mass of a rod of mass M and length L lies midway
between its ends, assuming the rod has a uniform mass per unit length.

A=M/L

1 (- L
xCOM:MJ x/ldx=§
0

A 4
=D

Example: Suppose the rod is non-uniform with its mass density varies as A = ax. Find
the center of mass.

L
Jo xaxdx al®/3 2
fOL axdx al?/2 3

XcoM =




5. THE CENTER OF MASS

Example: Please find out the center of mass of a semicircular hoop of radius R. The
hoop has a uniform density of A.

y
) fon(R cos@ i+ Rsinff)ARdO 2R
Tcom = T = ]
J, ARdO T /
X




0. MOTION OF A SYSTEM OF PARTICLES

The Motion of Center of Mass

> m1r1 A mzrz + m3r3 Z m, >
M=
Go m1 + mz + m3 + - M !

MTCOM = mlrl -+ mzrz + m37"3 z m; Tl

M _dt Tcom = My _dt L+ m, _dt r, + mgy _dt {5 P o
d\ . d\ . d\ . d\
M E Veom = My E vy +m, E Uy + Mg E U3z + -

Mdcoy = F + F, + F3+ - = z F; = Fretexternal



0. MOTION OF A SYSTEM OF PARTICLES

Example: Three particles are initially at rest. Each experiences an external force due to
bodies outside the three-particle system. The directions are indicated, and the
magnitudes are F; = 6.0 N, F, = 12 N, and F; = 14 N. What is the acceleration of the
center of mass of the system, and in what direction does it move?

- Ao A A D A “5; A
F; = —6i, F, = 6\21 + 6V2], F3 = 14{ Jig 1 F,

] 2kg T 45]
(2 + 4+ 2)dcoy = Frer = (8 + 6V2)1 + 6V2] L 4kg

N 3v2\ . 3V2 1
aCOM=<1+T>l+T] l2aka |




0. MOTION OF A SYSTEM OF PARTICLES

"
Kinetic Energy of a System k = z K; = z m‘zv‘

Change to relative velocity with reference to the COM

1_7)1' = ﬁCOM + ai MﬁCOM = ‘m1171 + mzﬁz + m31_7>3 + .-

Moy = my(Veoy + ty) + my(Weom + Uz) + mz(Veop + Uz) + -

MﬁCOM = (m1 + m, + ms + '“)7})COM + (mlﬁl + mzaz + mgﬁg + )

mlﬁl + mz'l_iz + m3ﬁ3 + e = 0

m; - — - — 1 1
K = Z K; = Z?l(vCOM +u;) - Weom +Up) = EMUgOM +Ezmi“i2
The Reference Frame at Center of Mass

If the external force is zero, the velocity of the center of mass is constant.

%
M " ) |:> Vcom = const vector




/. DEFORMABLE SYSTEMS

Example: As shown in the figure, two blocks are at rest on a frictionless table. Both
blocks have the same mass m, and they are connected by a spring of negligible mass.
The separation distance of the blocks when the spring is relaxed 1s L. During a time
interval At, a constant force of magnitude F 1s applied horizontally to the left block,
moving 1t through a distance x;. During the time interval, the right block moves
through a distance x,. At the end of this time interval, the force F is removed. (a) Find
the resulting speed v, of the center of mass of the system.

Momentum:FAt = 2mvcouy finai

i . X1 —+ X
Displacement: VcomavgAt = >
i : VcoMm, final
Constant Acceleration Motion:  vepuang = 2f ki
X1 + a2 2 F(xl + Xz)
= LMVcoM,final VcoM,final =
VcoM, final f 4 2m



8. ROCKET PROPULSION

Use Collision to Derive The Rocket Mo’rlon
M y —dM M+dM v+dv

Fext,horizontal =0 > @ _——

dM < 0, for a correct variation of mass to give correct differential equation
Mv=-UdM + (M + dM) (v + dv) Mv = —-UdM + Mv + Mdv + vdM + dvdM
0=w+dv—-U)dM + Mdv

Let the speed of the gas expelled by the rocket engine be v,

v+ dv—U = v, —VypedM = Mdv
dv dM dv
(a) M—=—vrq—— letR=—dM/dt M—= = Rure
M

dM v dM M,
(b) dv = _vrelv jv dv = — j vrelﬁ V = Vg + VUpe In (M)

0 MO



8. ROCKET PROPULSION

Example: A rocket whose initial mass M; 1s 850 kg consumes fuel at the rate R = 2.3
kg/s. The speed v, of the exhaust gases relative to the rocket engine 1s 2800 m/s. (a)
What thrust does the rocket engine provide? (b) What is the initial acceleration of the
rocket? (c¢) If the rocket 1s launched from a spacecraft where gravitation is negligible
small. What is its speed relative to the spacecraft when the mass of the rocket is 180 kg?

(@) Thrust: v,..;R = 2800 X 2.3 = 6440 N

(b) . Vyel R _ 6440 _ 7.6(m/s?
M; 850 ( )
(€} = (%)
V = Vg + Vper In T

850
v =0+ 2800 X In <ﬁ> = 4300(m/s)

https://giphy.com/gifs/producthunt-rocket-launch-26xB EamXwaMSUbV72



EXERCISE

A bullet of mass m moving with an initial speed v; is fired into and passes through a block of mass M. The
block initially at rest on a frictionless, horizontal surface, is connected to a spring with a force constant k. The
block moves d to the right after impact before brought to rest by the spring. Find (a) the speed at which the
bullet emerges from the block.

1 1

- 2 _ 1,2
ZMv de
V= M



EXERCISE

A chain of length L and total mass M is released from rest with its lower end just touching the top of a table.
Find the force exerted by the table on the chain after the chain has fallen through a distance x. (Assume each
link comes to rest the instant it reaches the table.)

dv

E — g’vz — ng — V= V ng 'J;_‘ 4
ey )_d(M )_de M dv
e T\ T oAt T L de ) |
F—M 2+M —3M
A A A |
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