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History

Leyden Jar

Ref: http://electronics.howstuffworks.com/capacitor3.htm, http://www.circuitstoday.com/capacitors-invention-history-and-the-story-of-leyden-jar

1745 AD – Ewald Georg von Kleist (German)
invent, not published

1745 AD – Pieter van Musschenbroek (Durch)
Dutch professor at the University of 
Leyden

1800 AD – Michael Faraday (British)
initiate the application of capacitors

1920 AD – practical and commonly used

http://www.learningaboutelectronics.com/Articles/Types-of-capacitors

Types of Capacitors: ceramic capacitors, 

aluminum electrolyte capacitors, tantalum 

capacitors, polyester capacitors, polypropylene 

capacitors, …



Capacitance

Definition & Calculation of Capacitance of a Capacitor

Ref: https://www.famousscientists.org/alessandro-volta/, http://ethw.org/Capacitors

A capacitor is a device consisting of two conductors that can carry 

equal and opposite charges. The medium between the two conductors 

is an insulator which is called a dielectric material.

In 1778, Alessandro Volta (Italian) discovered that electrical potential 

in a capacitor is proportional to the electrical charge in it.

𝑉 =
𝑄

𝐶
→ 𝐶 =

𝑄

𝑉

The unit of capacitance is known as “jas” before 1872. In 1872, the SI 

units are changed to “Volt, Ampere, Coulomb, Ohm and Farad”.

The unit of capacitance is farad (F). 1 F = 1 C/V; 1𝜇𝐹 = 10−6𝐹; 

1𝑝𝐹 = 10−12𝐹.



Calculation of 
Capacitance

Capacitance of a Parallel Plate Capacitor

The two charges Q and –Q are placed on two conductors of a capacitor.

Use Gauss’s law to obtain the electric field inside the capacitor.

Integrate to get the voltage difference between the two conductors.

The capacitance is equal to the charge Q divided by the derived 

voltage.

𝐸 2𝐴 = 4𝜋𝑘 𝜎𝐴 → 𝐸 = 2𝜋𝑘𝜎

𝐸𝑛𝑒𝑡 = 2 × 2𝜋𝑘𝜎

𝑉 = 4𝜋𝑘𝜎𝑑 =
4𝜋𝑘𝑄𝑑

𝐴 −
𝑄

=
−
𝜎
𝐴

+
𝑄

=
𝜎
𝐴

𝐸0
+Q

-Q

𝐸0𝑑

𝐶 =
𝑄

𝑉
=

𝐴

4𝜋𝑘𝑑
=
𝐴𝜀0
𝑑



Calculation of 
Capacitance

Capacitance of a Cylindrical and a Spherical Capacitors

Cylindrical Capacitor

2𝜋𝑟𝐿𝐸 = 4𝜋𝑘𝑄 → 𝐸 =
2𝑘𝑄

𝑟𝐿

𝑉 = −න
𝑏

𝑎 2𝑘𝑄

𝑟𝐿
𝑑𝑟 =

2𝑘𝑄

𝐿
ln

𝑏

𝑎

𝐶 =
𝑄

𝑉
=

𝐿

2𝑘 ln 𝑏/𝑎

Spherical Capacitor

𝑎

𝑏
+𝑄

−𝑄
𝐸

+𝑄

−𝑄

𝑎
𝑏 𝐸

4𝜋𝑟2𝐸 = 4𝜋𝑘𝑄 → 𝐸 =
𝑘𝑄

𝑟2

𝑉 = −න
𝑏

𝑎 𝑘𝑄

𝑟2
𝑑𝑟 = 𝑘𝑄

1

𝑎
−
1

𝑏

𝐶 =
𝑄

𝑉
=

𝑎𝑏

𝑘 𝑏 − 𝑎



Calculation of 
Capacitance

Self Capacitance of a Spherical Conductor

The spherical conductor is charged with charge +𝑄 and the imaginary 

conducting shell with an infinite radius is charged with charge −𝑄.

𝑎

𝑏 → ∞
+𝑄

−𝑄
𝐸

4𝜋𝑟2𝐸 = 4𝜋𝑘𝑄 → 𝐸 =
𝑘𝑄

𝑟2

𝑉 = −න
∞

𝑎 𝑘𝑄

𝑟2
𝑑𝑟 =

𝑘𝑄

𝑎

𝐶 =
𝑄

𝑉
=
𝑎

𝑘
= 4𝜋𝜀0𝑎



Equivalent 
Capacitance

Capacitors Connected in Series

For a series connection, the charge induced in the inner connection 

plate is equal to that placed on the outside plate.

The voltage across the two capacitors is 

summed together.

Each capacitor possesses its own voltage and charge with a relation to 

its capacitance.

𝐶1 =
𝑄

𝑉1
→ 𝑉1 =

𝑄

𝐶1

𝐶2 =
𝑄

𝑉2
→ 𝑉2 =

𝑄

𝐶2

𝑉 = 𝑉1 + 𝑉2 =
𝑄

𝐶1
+
𝑄

𝐶2
→

1

𝑄/𝑉
=

1

𝐶1
+

1

𝐶2
1

𝐶
=

1

𝐶1
+

1

𝐶2

𝐶1

𝐶2

𝑄

𝑄

−𝑄

−𝑄



Equivalent 
Capacitance

Capacitors Connected in Parallel

For a parallel connection, the voltage difference across the two 

capacitors is the same.

The net charge on one side of the two 

capacitors is summed together.

Each capacitor possesses its own voltage and charge with a relation to 

its capacitance.

𝐶1 𝐶2𝑄1 𝑄2

−𝑄2−𝑄1

𝑉1 = 𝑉2 = 𝑉

𝐶1 =
𝑄1
𝑉
→ 𝑄1 = 𝐶1𝑉 𝑄2 = 𝐶2𝑉

𝑄 = 𝑄1 + 𝑄2 = 𝐶1𝑉 + 𝐶2𝑉

𝑄

𝑉
= 𝐶1 + 𝐶2 → 𝐶 = 𝐶1 + 𝐶2



Stored Energy

Energy Stored in a Charged Capacitor & in Electric Field

𝑞, 𝑉𝑞 =
𝑞

𝐶

−𝑞

𝑑𝑞

𝐴

𝑑

When the parallel capacitor is charged up to 

charge 𝑞, the voltage across the capacitor is

𝑉 𝑞 =
𝑞

𝐶
→ 𝑑𝑈 = 𝑉 𝑞 𝑑𝑞 =

𝑞

𝐶
𝑑𝑞

Total energy when charged up to 𝑄 and 𝑉 = 𝑄/𝐶:

𝑈 = න
0

𝑄 𝑞

𝐶
𝑑𝑞 =

𝑄2

2𝐶
=
1

2
𝑄𝑉 =

1

2
𝐶𝑉2

The energy of electric field inside the parallel capacitor is the same as 

the capacitor charging energy. Assume an energy density of electric 

field as 𝑢𝐸 = 𝑈/𝑉. Change energy to electric field (𝑄/𝐴𝜀0) expression.

𝑈 =
𝑄2

2𝐶
→ 𝑢𝐸𝐴𝑑 =

𝐴2𝜀0
2

2𝐶

𝑄

𝐴𝜀0

2

→ 𝑢𝐸𝐴𝑑 =
𝐴2𝜀0

2

2𝐴𝜀0/𝑑

𝑄

𝐴𝜀0

2

→ 𝑢𝐸 =
𝜀0
2

𝑄

𝐴𝜀0

2

=
𝜀0𝐸

2

2



The Role of 
Dielectrics

The Insulator Between Two Conductors – Dielectrics

Dielectrics: change the vacuum permittivity 𝜀0 to 𝜅𝜀0 = 𝜀 (𝜅 > 1), 

increase the charge storage capability

Constant charge condition, 

the electric field inside is 

reduced to 𝑄0/𝜅𝜀0

Constant voltage condition, 

the charge is increased to 𝜅𝑄0

+𝑄0

−𝑄0

𝐸0 = 𝑄0/𝜀0

+𝑄0

−𝑄0

𝐸 = 𝑄0/𝜅𝜀0

+𝑄0

−𝑄0

𝐸0

+𝑄

−𝑄
𝐸0 = 𝑄/𝜅𝜀0

𝑉0
𝑑
= 𝐸0 =

𝑄0
𝜀0

=
𝑄

𝜅𝜀0
→ 𝑄 = 𝜅𝑄0

Material Air Glass Mica Al2O3 Polystyrene HfO2 or ZrO2

Dielectric 
Constant 𝜅

1.00059 5.6 5.4 9.1 2.55 25



The Role of 
Dielectrics

Bound Charge

Constant charge condition, the 

bond charge is used to decrease 

inner electric field

+𝑄0

−𝑄0

𝐸0 = 𝑄0/𝐴𝜀0

+𝑄0

−𝑄0

𝐸 = 𝑄0/𝐴𝜅𝜀0

Constant voltage condition, 

additional charge is supplied to 

balance the bound charge

+𝑄0

−𝑄0

𝐸0

+𝑄

−𝑄
𝐸0 = 𝑄/𝐴𝜅𝜀0

𝑄 = 𝑄0 + 𝑄𝑏

𝑄0 − 𝑄𝑏 =
𝑄0
𝜅

𝑄𝑏 = 𝑄0
𝜅 − 1

𝜅

𝜅𝑄0 = 𝑄0 + 𝑄𝑏 = 𝑄0 𝑄𝑏 = 𝜅 − 1 𝑄0

𝐸0 → 𝐸 ⇒ 𝑄0 →
𝑄0
𝜅
⇒ 𝑄0 → 𝑄0 − 𝑄𝑏

𝐸0 =
𝑄0
𝐴𝜀0

=
𝑄

𝐴𝜅𝜀0
→ 𝑄0 =

𝑄

𝜅



The Role of 
Dielectrics

Energy Stored in The Presence of Dielectrics

Energy stored in the capacitor and the energy density of an electric 

field change with dielectrics replacing the vacuum. Just use 𝜀 = 𝜅𝜀0 to 

replace 𝜀0. At a constant voltage, the stored energy is estimated to be

𝑈 =
1

2
𝐶𝑉0

2 for a parallel plate capacitor, 𝑈 =
1

2

𝐴𝜀

𝑑
𝑉0
2.

Electric field with constant strength, 𝐸0:

𝑢𝐸 =
1

2
𝜀0𝐸0

2 → 𝑢𝐸 =
1

2
𝜀𝐸0

2

Additional energy 
1

2
𝜅 − 1 𝜀0𝐸0

2 stored in separating electrons and 

holes in atoms of dielectrics.

-q
+

q
++++++++++++++++++++

- - - - - - - - - - - - - - - - - - - -

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

-q
+

q

−𝑄𝑏, −𝜎𝑏 = −𝑄𝑏/𝐴



Electric Dipole

Electric Potential and Torque of Dipoles in Electric Field

Distortion of electron cloud of an atom. The 

vector of electric dipole moment Ԧ𝑝, 𝑝 = 𝑞𝑎

Electric dipole moment in electric field

-q +q
Ԧ𝑎

𝐸0

𝑞𝐸0

−𝑞𝐸0

Ԧ𝜏 =
1

2
Ԧ𝑎 × 𝑞𝐸0 + −

1

2
Ԧ𝑎 × −𝑞𝐸0

Ԧ𝜏 = 𝑞 Ԧ𝑎 × 𝐸0 = Ԧ𝑝 × 𝐸0 = 𝑝𝐸0 sin 𝜃

To store potential energy, a negative torque 

must be exert, 𝜏 = −𝑝𝐸0 sin 𝜃

𝑑𝑈 = −𝜏𝑑𝜃 = − −𝑝𝐸0 sin 𝜃 𝑑𝜃 = 𝑝𝐸0 sin 𝜃 𝑑𝜃

𝑈 = න
𝜋/2

𝜃

𝑝𝐸0 sin 𝜃 𝑑𝜃 = −𝑝𝐸0 cos 𝜃 = − Ԧ𝑝 ∙ 𝐸0



Examples

Charge Conservation, Redistribution

Two charged capacitors are carefully connected in parallel. Please 
calculate the voltage across the capacitors and the charge on the two 
capacitors.

−48 μC 48 μC
𝐶1 = 6 μF

−42 μC 42 μC

𝐶2 = 12 μF

Consider the charge conservation

𝑄𝑛𝑒𝑡 = 90 μC

The same voltage difference across the two 

capacitors

𝑉1 = 𝑉2 = 𝑉 → 𝐶1 =
𝑄1
𝑉
, 𝐶2 =

𝑄2
𝑉
, 𝑄1 + 𝑄2 = 90 μC

6𝑉 + 12𝑉 = 90 → 𝑉 = 5 V

𝑄1 = 30 𝜇𝐶, 𝑄2 = 60 𝜇𝐶



Examples

Equivalent Capacitance

Please calculate the equivalent capacitance of the capacitor circuit.

𝐶1 = 4 𝜇𝐹

𝐶2 = 2 𝜇𝐹

𝐶3 = 6 𝜇𝐹

Use the parallel/series connection rules for calculation

𝐶12,𝑒𝑞𝑢𝑖 = 𝐶1 + 𝐶2 = 6 𝜇𝐹

1

𝐶𝑛𝑒𝑡
=

1

𝐶12,𝑒𝑞𝑢𝑖
+

1

𝐶3
=
1

6
+
1

6

𝐶𝑛𝑒𝑡 = 3 𝜇𝐹



Examples

Equivalent Capacitance

Please calculate the equivalent capacitance of the capacitor circuit.

C 2C

C 2C

q

q

-q

-q

q

q

-q

-q

C 2C

C 2C

C 2C

C 2C



Examples

Equivalent Capacitance

Please calculate the equivalent capacitance of the capacitor circuit.

C 2C

C 2C

C 2C

C 2C

1

𝐶𝑡
=

1

𝐶 + 𝐶
+

1

2𝐶 + 2𝐶
=

3

4𝐶

𝐶𝑡 =
4

3
𝐶

1

𝐶
=
1

𝐶
+

1

2𝐶
=

3

2𝐶

𝐶 =
2

3
𝐶

𝐶𝑡 =
2

3
𝐶 +

2

3
𝐶 =

4

3
𝐶



Examples

Equivalent Capacitance

Some physical systems such as microwave waveguide and the axon of a nerve cell 

possessing capacitance continuously distributed over space can be modeled as an 

infinite array of discrete circuit elements. To analyze an infinite array, determine the 

equivalent capacitance  𝐶 between terminals 𝑋 and 𝑌 of the infinite set of capacitors 

shown in the figure. Each capacitor has capacitance 𝐶0.

1

𝐶𝑡𝑜𝑡𝑎𝑙
=

1

𝐶0
+

1

𝐶0 + 𝐶𝑡𝑜𝑡𝑎𝑙
+

1

𝐶0

𝐶𝑡𝑜𝑡𝑎𝑙 =
3 − 1

2
𝐶0

1

𝐶𝑡𝑜𝑡𝑎𝑙
=
𝐶0 + 2 𝐶0 + 𝐶𝑡𝑜𝑡𝑎𝑙
𝐶0 𝐶0 + 𝐶𝑡𝑜𝑡𝑎𝑙

𝐶0 𝐶0 + 𝐶𝑡𝑜𝑡𝑎𝑙 = 3𝐶0 + 2𝐶𝑡𝑜𝑡𝑎𝑙 𝐶𝑡𝑜𝑡𝑎𝑙

2𝐶𝑡𝑜𝑡𝑎𝑙
2 + 2𝐶0𝐶𝑡𝑜𝑡𝑎𝑙 − 𝐶0

2 = 0 𝐶𝑡𝑜𝑡𝑎𝑙 =
−2 ± 12

4
𝐶0



Examples

Energy Density of Electric Field

Please calculate the build up energy for a spherical conductor of radius 
𝑅 charged with net charge of 𝑄.

Put the center of the sphere on the origin of the coordinate system.

+Q

𝑅

ො𝑥

ො𝑦

Ƹ𝑧
Use Gauss’s law to obtain the electric field.

𝑟 > 𝑅, 𝐸 =
𝑘𝑄

𝑟2

Use the energy density of electric field.

𝜉 =
𝜀0
2
𝐸2 =

𝜀0𝑘
2𝑄2

2𝑟4

𝑈 = න
𝑟=𝑅

∞

𝜉4𝜋𝑟2𝑑𝑟 = න
𝑅

∞ 4𝜋𝜀0𝑘
2𝑄2

2𝑟2
𝑑𝑟 =

𝑘𝑄2

2𝑅
=
1

2
𝑄
𝑘𝑄

𝑅
=
1

2
𝑄𝑉



Examples

Parallel or Series Connection for Capacitance Calculation

A parallel-plate capacitor has square plates of area 𝐴 and a separation 
of 𝑑. A dielectric slab of dielectric constant 𝜅 has the same area 𝐴 and 
a thickness of 𝑑. (a) What is the capacitance without the dielectric? (b) 
What is the capacitance with the dielectric? (c) What is the capacitance 
if a dielectric slab having a thickness of 3𝑑/4 is inserted into the 
capacitor and attached to one metal plate of the capacitor?

(a)
Use Gauss’s law to obtain 𝐸 = 4𝜋𝑘𝑄/𝐴 and obtain the voltage

𝑉 =
4𝜋𝑘𝑄𝑑

𝐴
→ 𝐶 =

𝑄

𝑉
=

𝐴

4𝜋𝑘𝑑
=
𝐴𝜀0
𝑑

(b)
Change 𝜀0 to 𝜅𝜀0

𝐶 =
𝐴𝜅𝜀0
𝑑



Examples

Parallel or Series Connection for Capacitance Calculation

A parallel-plate capacitor has square plates of area 𝐴 and a separation 
of 𝑑. A dielectric slab of dielectric constant 𝜅 has the same area 𝐴 and 
a thickness of 𝑑. (a) What is the capacitance without the dielectric? (b) 
What is the capacitance with the dielectric? (c) What is the capacitance 
if a dielectric slab having a thickness of 3𝑑/4 is inserted into the 
capacitor and attached to one metal plate of the capacitor?

(c)
𝐶1

𝐶2

𝐶1 =
𝐴𝜀0
𝑑/4

𝐶2 =
𝐴𝜅𝜀0
3𝑑/4

1

𝐶
=

1

𝐶1
+

1

𝐶2
=
𝑑/4

𝐴𝜀0
+
3𝑑/4𝜅

𝐴𝜀0
=

𝜅 + 3 𝑑/4𝜅

𝐴𝜀0

𝐶 =
4𝜅𝐴𝜀0
𝜅 + 3 𝑑



Examples

Parallel or Series Connection for Capacitance Calculation

A parallel plate capacitor with plates of area 𝐿 ×𝑊 and separation 𝑡
has the region between its plates filled with wedges of two dielectric 
materials. Assume 𝑡 is much less than both 𝑊 and 𝐿. (a) Please 
determine its capacitance.

𝐿𝑊

𝜅1 𝜅2

The thickness of the 𝜅1 dielectrics decreases as 

𝑡
𝐿−𝑥

𝐿
. The thickness of the 𝜅2 dielectrics 

increases as 𝑡
𝑥

𝐿
. 𝑥

𝜅1
𝜅2
𝑑𝑥

For a short stripe of a width 𝑑𝑥, the series 

connected capacitance 𝐶 is 
1

𝐶
=

1

𝐶1
+

1

𝐶2
, where 

𝐶1 =
𝐴𝜀

𝑑1
=

𝑊𝑑𝑥𝜅1𝜀0

𝑡(𝐿−𝑥)/𝐿
 and 𝐶2 =

𝐴𝜀

𝑑2
=

𝑊𝑑𝑥𝜅2𝜀0

𝑡𝑥/𝐿
.

𝐶 =
𝑊𝜀0𝑑𝑥

𝑡
1
𝜅1

+
𝑥
𝐿

1
𝜅2

−
1
𝜅1



Examples

Parallel or Series Connection for Capacitance Calculation

A parallel plate capacitor with plates of area 𝐿 ×𝑊 and separation 𝑡
has the region between its plates filled with wedges of two dielectric 
materials. Assume 𝑡 is much less than both 𝑊 and 𝐿. (a) Please 
determine its capacitance.

𝐿𝑊

𝜅1 𝜅2
𝑥

𝜅1
𝜅2
𝑑𝑥

𝐶 =
𝑊𝜀0𝑑𝑥

𝑡
1
𝜅1

+
𝑥
𝐿

1
𝜅2

−
1
𝜅1

All the stripes are parallel connected, thus

𝐶𝑡𝑜𝑡𝑎𝑙 = න
0

𝐿 𝑊𝜀0𝑑𝑥

𝑡
1
𝜅1

+
𝑥
𝐿

1
𝜅2

−
1
𝜅1

=
𝑊𝜀0𝐿

𝑡
1
𝜅2

−
1
𝜅1

ln
𝜅1
𝜅2



Examples

Calculation of Force from Energy Stored in a Capacitor

Two square plates of sides l are placed parallel to each other with separation 𝛿, where

𝛿 ≪ 𝑙. The plates carry uniformly distributed static charges +𝑄0 and −𝑄0. A block of 

metal with width l, length l, and thickness slightly less than 𝛿 is inserted a distance x

into the space between the plates. The charge on the plates remains uniformly 

distributed. In a static situation, a metal prevents an electric field from penetrating 

inside it and can be thought of as a perfect dielectric with 𝜅 → ∞. (a) Calculate the 

stored energy in the system as a function of x. (b) Find the direction and the magnitude 

of the force acting on the metallic block. + + + + + +

- - - - - -

+Q0

-Q0

x 𝛿

l

Inside the metal 𝐸 = 0

𝐸 =
𝜎

𝜀0
=

𝑄0
𝜀0𝑙

2

The energy density is
𝜀0𝐸

2

2
=
𝜀0
2

𝑄0
𝜀0𝑙

2

2

=
𝑄0
2

2𝜀0𝑙
4

In the space without dielectric materials

the total energy 𝑙 𝑙 − 𝑥 𝛿
𝑄0
2

2𝜀0𝑙
4

𝑈 𝑥 =
𝛿𝑄0

2 𝑙 − 𝑥

2𝜀0𝑙
3



Examples

Calculation of Force from Energy Stored in a Capacitor

Two square plates of sides l are placed parallel to each other with separation 𝛿, where

𝛿 ≪ 𝑙. The plates carry uniformly distributed static charges +𝑄0 and −𝑄0. A block of 

metal with width l, length l, and thickness slightly less than 𝛿 is inserted a distance x

into the space between the plates. The charge on the plates remains uniformly 

distributed. In a static situation, a metal prevents an electric field from penetrating 

inside it and can be thought of as a perfect dielectric with 𝜅 → ∞. (a) Calculate the 

stored energy in the system as a function of x. (b) Find the direction and the magnitude 

of the force acting on the metallic block. + + + + + +

- - - - - -

+Q0

-Q0

x 𝛿

l

The force is derived from the potential energy.

F 𝑥 = −
𝑑𝑈

𝑑𝑥
=

𝛿𝑄0
2

2𝜀0𝑙
3



Examples

An Atomic Description of Dielectrics

A hydrogen atom consists of a proton nucleus of charge +𝑒 and an 
electron of charge – 𝑒. The charge distribution of the atom is 
spherically symmetric, so the atom is nonpolar. Consider a model in 
which the hydrogen atom consists of a positive charge +𝑒 at the 
center of a uniformly charged spherical cloud of radius 𝑅 and total 
charge – 𝑒. Show that when such an atom is placed in a uniform 
external field 𝐸, the induced dipole moment is proportional to 𝐸; that 
is,  𝑝 = 𝛼𝐸, where 𝛼 is called the polarizability. Please find 𝛼.

−𝑒
+𝑒

Take the −𝑒 charge as uniformly charged sphere 

of radius 𝑅.

−𝑒 = 𝜌
4𝜋𝑅3

3
→ 𝜌 = −

3𝑒

4𝜋𝑅3
For a position with a distance 𝑟 away from the 

center, the electric field due to the uniformly 

charged sphere is
4𝜋𝑟2𝐸 = 𝜌

4𝜋𝑟3

3𝜀0
→ 𝐸 =

𝜌Ԧ𝑟

3𝜀0
= −

𝑒 Ԧ𝑟

4𝜋𝜀0𝑅
3



Examples

An Atomic Description of Dielectrics

A hydrogen atom consists of a proton nucleus of charge +𝑒 and an 
electron of charge – 𝑒. The charge distribution of the atom is 
spherically symmetric, so the atom is nonpolar. Consider a model in 
which the hydrogen atom consists of a positive charge +𝑒 at the …

−𝑒
+𝑒

𝐸 = −
𝑒 Ԧ𝑟

4𝜋𝜀0𝑅
3

The electric dipole 𝑝 is defined as 𝑝 = 𝑞𝑑 = 𝑒𝑟.

According to the proposed model of 𝑝 = 𝛼𝐸, we put 𝑝 =

𝑒𝑟 and 𝐸 = 𝐸 =
𝑒𝑟

4𝜋𝜀0𝑅3
 to find 𝛼.

𝑒𝑟 = 𝛼
𝑒𝑟

4𝜋𝜀0𝑅
3 → 𝛼 = 4𝜋𝜀0𝑅

3



Examples

An Atomic Description of Dielectrics

Two spheres have radii a and b, and their centers are a distance d apart. Show 

that the capacitance of this system is 𝐶 =
4𝜋𝜀0
1

𝑎
+
1

𝑏
−
2

𝑑

, provided d is large compared 

with a and b. Show that as d approaches infinity, the capacitance reduces to 

that of two spherical capacitors in series.

The first step is to find a reference position 

to calculate the potential of the two spheres.

a b
d

+Q0 -Q0



Examples

An Atomic Description of Dielectrics

Two spheres have radii a and b, and their centers are a distance d apart. Show 

that the capacitance of this system is 𝐶 =
4𝜋𝜀0
1

𝑎
+
1

𝑏
−
2

𝑑

, provided d is large compared 

with a and b. Show that as d approaches infinity, the capacitance reduces to 

that of two spherical capacitors in series.

𝑉1 = −න
𝑑−𝑏

𝑎 𝑘𝑄0
𝑟2

𝑑𝑟 =
𝑘𝑄0
𝑎

−
𝑘𝑄0
𝑑 − 𝑏

𝑉2 = න
𝑑−𝑎

𝑏 𝑘𝑄0
𝑟2

𝑑𝑟 = −
𝑘𝑄0
𝑏

+
𝑘𝑄0
𝑑 − 𝑎

∆𝑉 = 𝑉1 − 𝑉2 =
𝑘𝑄0
𝑎

−
𝑘𝑄0
𝑑 − 𝑏

+
𝑘𝑄0
𝑏

−
𝑘𝑄0
𝑑 − 𝑎



Examples

An Atomic Description of Dielectrics

Two spheres have radii a and b, and their centers are a distance d apart. Show 

that the capacitance of this system is 𝐶 =
4𝜋𝜀0
1

𝑎
+
1

𝑏
−
2

𝑑

, provided d is large compared 

with a and b. Show that as d approaches infinity, the capacitance reduces to 

that of two spherical capacitors in series.

1

𝐶
=
∆𝑉

𝑄0
=
𝑘

𝑎
+
𝑘

𝑏
−

𝑘

𝑑 − 𝑏
−

𝑘

𝑑 − 𝑎

𝐶 =
1

𝑘

1

1
𝑎
+
1
𝑏
−

1
𝑑 − 𝑏

−
1

𝑑 − 𝑎
 
≅
1

𝑘

1

1
𝑎
+
1
𝑏
−
2
𝑑

 

𝑑 → ∞, 𝐶 =
4𝜋𝜀0
1
𝑎
+
1
𝑏

→
1

𝐶
=

1

4𝜋𝜀0𝑎
+

1

4𝜋𝜀0𝑏
Self Capacitances Connected 

in Serial
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