
WEEK 12 – JAVASCRIPT
FUNCTIONS
WEN-BIN JIAN

DEPARTMENT OF ELECTROPHYSICS, NATIONAL CHIAO TUNG UNIVERSITY

OUTLINE

1. Functions

2. Value or Reference

3. Variable & Functions

4. Arguments & variable number of

arguments of a Function

5. No overloading in JavaScript

6. Copying values or direct reference to a

variable

7. Scope

8. Garbage collection

9. Skills for using functions

FUNCTIONS

• For other languages, you sometimes have two types of function calls, one is the

“subroutine” and the other is “function”. For JavaScript, they are the same.

• Subroutine: function func(){ … return;}

• Function: function func(){ … return value;}

• Function definition is declared by

• function functionName(arg0, arg1, arg2, …){

• …}

• After the definition, you can call the function by using “functionName(par1, par2, …)”.

• The “return” in the function defines the leaving statement thus the statements after

“return” will not be executed.

Ref1:

FUNCTIONS

• Without input parameters: function func() { … return value;}

• With input parameters: function func(par1, par2, …) { … use value of par1, par2, …

return;}

• Parameters: value or reference?

• values for common-used objects of Bolleans, Numbers, and Strings

• Reference for Array created by: var arr = new Array(3);

• Reference for Objects created by: var obj_name = new Object()

• Nested functions: function fmain(){ function fsub1(){} function fsub2(){}}

FUNCTIONS

• Variable functions:

• var f = function(x){

• if (typeof(x)=="number") return (x*x+2*x+1);

• else return 0;

• }; call it using “f(3)”

• Array functions:

• var arra = new Array(3); here arra.length is 3

• arra[0] = function(x){

• if (typeof(x)=="number") return (x*x+2*x+1);

• else return 0;

• }; call it using “arra[0](5)”

function func(a, b){return (a%b);}

var f = func;

f(11,3) → 2

arra[1] = func;

arra[1](11,3) → 2

FUNCTIONS

• When do you use functions? When you write the same code for many times, you shall

use the function call.

• For example, we want to solve similar problems for many times.

• a = 12; b = 15;

• while (a % b != 0){

• let c = a % b; a = b; b = c;}

• You can collect them to a function.

• function gcd(a, b){ while (a % b != 0){

• let c = a % b; a = b; b = c;}

IC_W1201.html IC_W1201r.html

‘let’ usage:

let a = 20;

Declare a variable in a

function. It’s a local

variable and disappears

outside the function.

Ex06a.html

FUNCTIONS

• You can write your functions to solve your problems.

• For example, we want to find all the factors of a number.

• We may write a function and set up the user interface.

• Once we get the user’s request, we can give an answer to him.

IC_W1202.html

Ex06b.html

ARGUMENTS

• The JavaScript processes the function arguments by using the

arguments object.

• The arguments object is similar to array.

• You could send either one three parameters to a function even if you

define the function to accept two arguments.

• The first parameter is arguments[0] and the second one is

arguments[1].

• The number of parameters sent to the function is recorded by

arguments.length.

IC_W1203.html

Ex06c.html

ARGUMENTS
• The parameters of nulls, Booleans, Numbers, and Strings are passed to

functions through copying by values.

• The named arguments can be used in connection with the arguments

object.

• You can change the value of the arguments object.

• For a function of two named arguments, if only one argument is passed

to the function, the change to arguments[1] will not be reflected in the

named argument.

• The named arguments and the arguments object do not use the same

memory. They are kept in synchrony.

IC_W1204.html

Ex06d.html

NO OVERLOADING

• Functions can be overloaded in computer languages like C++ and Java but they cannot be

overloaded in the JavaScript language.

• If two functions are defined with the same function name, the later one will be called.

• The C language typically use overloading to solve the call with different parameters.

• int abs (int n);

• long int abs (long int n);

• The JavaScript use the arguments object thus it already support the function called with

different number and types of parameters.

OUTLINE

1. Functions

2. Value or Reference

3. Variable & Functions

4. Arguments & variable number of

arguments of a Function

5. No overloading in JavaScript

6. Copying values or direct reference

to a variable

7. Scope

8. Garbage collection

9. Skills for using functions

COPYING VALUES OR DIRECT REFERENCE TO
VARIABLES

• For these basic types including undefined, null, boolean, number,

and string, the assignment requests the copy of values.

• var num1 = 5; var num2 = num1;

• var nobj1 = null; var nobj2 = nobj1;

• The above codes show the copying of values. The num1 and

num2 are two different variables having different references

(memory addresses).

• For most other object types, the assignment gives direct

reference to variables.

• var obj1 = new Object(); var obj2 = obj1;

• obj1.name = “John”;→ obj2.name ?

IC_W1205.html

Ex06e.html

COPYING VALUES OR DIRECT REFERENCE TO
VARIABLES

• If we send parameters to functions by using basic types, we copy

values. The variable values outside the functions can not be

changed inside the function.

• If you want to change the variable value inside the function, you

have to use direct reference to variables. The way to use direct

reference is to create an object.

• When a new object is created, it will be accompanied with a

block of memory and a memory address.

IC_W1206.html

Ex06f.html

SCOPE

• The scope of variables are used in functions. Thus, there are global variables and local variables when

you use functions.

• Local variables in a function will be deleted when the execution of the function is finished.

• The scope is varied when using the statements of “with” or “catch” in a “try-catch” statement.

IC_W1207.html

SCOPE

• The if and for statements do not have block-level scopes.

• If you forgot to declare variable in function, the variable will be promoted to a global variable.

• If you define a variable with the same name in a function, you will block your access to the global

variable of the same name.

• You can call window.variable_name to access global variables inside your functions.

IC_W1208.html

Ex06h.html

SPECIAL SKILLS FOR FUNCTIONS

• Recursive functions – call themselves

• function fact(n){

• if (typeof(n) != "number") return 0;

• if (n == 1) return 1;

• else return (n * fact(n-1));

• }

function fact(n){

if (typeof(n) != "number") return 0;

if (n == 1) return 1;

else return (n + fact(n-1));

}

GARBAGE COLLECTION

• For those basic types of variables, like number and string, the garbage

collections are done by the system (the browsers, like internet explorer,

google chrome, …).

• For other types of variables, where the reference are used in the copying

process, the garbage collection have to be assisted by the programmers.

• Other types of variables are always objects. It’s healthy to write a good

destructor function when the programmers design a new object.

• The memory allocation happens in the process when you claim a “new”

command for the object. The constructor function of the object will be

called in the “new” process.

• For JavaScript, remember to use “variable_name = null” to call the

destructor function of the object variables.

IC_W1209.html

Ex06i.html

EXERCISE

1. Please design html input fields to accept values of 2X2 matrix. Please calculate the

determinant of the user’s input of the 2X2 matrix. Please design 2 matrices (2X2) and

calculate the multiplication of the two matrices.

2. Please design a textarea to receive the user’s article and a button pressed for the

calculation of the total number of characters without blanks. Calculate the repetition

times of each character in the article.

3. Please design a textarea to receive the user’s article and design a search button and a

text field to find the position of the word specified in the searching field.

EXERCISE

• Provide two input fields for users to get an integer N (N>1) as an denominator and an

integer (M) for summation. Give an output of the total of 1/N+(1/N)^2+…(1/N)^M.

• Provide one input field for users to get an integer N. Give the result of all prime numbers

no bigger than N.

• Provide one input field for users to get an integer N. Print out the sum of

1/1!+1/2!+…+1/N!.

• Provide a text field for users to get several positive floating-point numbers. Print out the

arithmetic average value and the root mean square.

