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25. I\gOLECULAR MODEL OF AN IDEAL
A

ldeal gas model:

1. The number of molecules in the gas is large and the average separation among
molecules is large compared with their size.

2. Newton's law of motion is strictly obeyed for each molecule, but molecules move
randomly.

3. The molecules interact only by short-range force during elastic collisions.
4. The molecules make elastic collisions with the walls.

5. The gas under consideration is a pure substance; that is, all molecules are identical.

A

N molecules in the cube of length d

each molecule has a mass of m and D
velocity v = vl + vy j + v,k id’m

v

use impulse to estimate the force on the walls, assume an
interval At between successive collisions on the wall




gs.Al\gOLECULAR MODEL OF AN IDEAL
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1. MOLECULAR MODEL OF AN IDEAL

GAS

ldeal gas model:

2
m; >tompore WIthPV = NkgT

PV—N2
3

mv?\ 3
2 =_kBT

2

We will learn the concept later from the equipartition theory.

2
one degree of freedom: <m;"> = %kBT
2

three degree of freedom: <m2v > = %kBT
v?\ 3
The internal energy of an ideal gas: Ej,; = N > | = ENkBT

The root-mean-square speed of a molecule:

3krT 3kpT
(UZ> = TB Urms = (UZ) = nli

v



23. I\gOLECULAR MODEL OF AN IDEAL
A

Example: Please calculate the root-mean-square speed of a hydrogen molecule at
room temperature.

= 3kBT— 3RT]V[—OOOZk R = 8.314 / T =300K
Urms = m M’ = U. g n = o. mol kK’ T T

Vprms =1930 m/s

Example: A tank of volume 0.300 m3 contains 2.00 mole of helium gas at 20.0°C.
Assuming the helium behaves like an ideal gas,

(a) find the total internal energy of the gas.

(b) What is the root-mean-square speed of the helium atoms?

n=20mol T=20°C =293.15K

3 3
- E = EnRT = 5(2.00)(8.314)(293.15) =7310J

vrms M

_ [3RT _ [38319)(29315)
i 0.004 B S



2. MOLAR SPECIFIC HEAT OF AN
IDEAL GAS

Equations for an ideal gas:

3
PV =nRT AW = — j PAV  AEp =AQ +AW  Egne = 5nRT

Molar specific heat at constant volume:

_ @ : ;

- n(1),_, AV =0 - AW = 0,AE;,; = AQ Eine = 5nRT — Mg, = EnR(AT)
(AQ) (AE) 3nR(AT)/2 3R

T n(AT) n(AT)  n(AT) 2

Cy

Cy

Molar specific heat at constant pressure:

)

Cp = . . _
P n(AT)ppo AP =0 - AW # 0 PV =nRT - P(AV) = nR(AT)

3
ABine = STR(AT), 0Q = AE — AW = AE + P(aV)
3 S nR(AT) + nR(AT) .
AQO = —nR(AT R(AT = = R =—R
Q Zn ( )+n ( )_)CP Tl(AT) CV+ 2




2. MOLAR SPECIFIC HEAT OF AN
IDEAL GAS

The ratio of the two molar specific heats is defined: Y = C_V
The specific heats of monatomic, diatomic, and triatomic gas:

_

20.8 12.5 8.33 1.67=5/3
H, 28.8 20.4 8.33 1.41=7/5
co, 37 28.5 8.5 1.31=9/7

Example: A cylinder contains 3.00 mol of helium gas at a temperature of 300 K.
(a) If the gas is heated at constant volume, how much energy must be
transferred by heat to the gas after it is heated to 500 K¢ (b) How much energy
must be transferred by heat to the gas at constant pressuree

n = 3.00 mol, AT = 500 — 300 = 200 K, C, = 3R/2,Cp = 5R/2
J

R = 8.314
mol K

AQy, = nCy(AT) = (3.00)(3R/2)(200) = 7480 ]

AQp = nCp(AT) = (3.00)(5R/2)(200) = 12500 J
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3. ADIABATIC PROCESSES FOR AN
IDEAL GAS

Adiabatic process: what is the P-V dependence?

AQ = 0 = AE;, = AW = —PAV .
1400+

Eine = nCyT = AEip = nCy(AT) ool isothermal

nCy (AT) = —P(AV) w200

C
adiabatic P(V) = —

s00} Ao VY

PV = nRT - P(AV) + V(AP) = nR(AT)

600+

P(AV) + V(AP) = n(Cp — Cy)(AT) 400}
—P(AV) 2001

C ST I ST RN TR SN
V -

P(AV) + V(AP) = (1 — y)P(AV) - yP(AV) + V(AP) = 0
Vi, (InV —InV,) = —InP +InP VY _ (o
— —_— = - — = — - | — = || ==

Yv 3 y(In nV, n n P, 7 P

— PVY = POVOY = const

P(AV) + V(AP) = (Cp — Cy)




3. ADIABATIC PROCESSES FOR AN
IDEAL GAS

Example: The fuel-air mixture in the cylinder of a diesel engine at 20.0°C s
compressed from an inifial pressure of 1.00 atm and volume of 800 cm3 to a volume
of 60.0 cm3. Assuming that the mixture behave as an ideal gas with y = 1.4 and that
the compression is adiabatic, find the final pressure and temperature of the mixture.

P; = 1atm,V; = 800 cm>,T; = 293.15 K, V; = 60 cm®

In an adiabatic process, the P-V follows P,V = P,V

_ PV/  1.00 x 800"

Pf = 163, = 60014 = 37.6 atm

T;vY™"  293.15 x 800%*

T - eogor ook
i

y-1 _ y-1 _



4. THE EQUIPARTITION OF ENERGY

The theory of the equipartition of energy: In the equilibrium condition, each
degree of freedom conftributes an average energy of kzT /2 per molecule.

Monatomic gas molecule: three degrees of freedom of franslational motion

Diatomic gas molecule:
three degrees of freedom for translation motion
two degrees of freedom for rotational motion

two degrees of freedom for vibrational motion S

Molar specific heat of the diatomic gas system:

3 5 s . .
Cy = SR, Cp = SR for molecules only in translational motion

Cy = gR, Cp = %R for molecules in franslational and rotational motion .WVL

7 o) - s . . .
Cy =R, Cp =R for molecules in translational, rotational, and vibrational /

motion



4. THE EQUIPARTITION OF ENERGY

Cp molar specific heat at constant pressure of normal
hydrogen molecules

U.S. Department of Commerce National Bureau of
Standards, V41, P379 (1948).

The temperature dependence implies the energy
quantization for rotational and vibrational motions.

It points out the difference between classical and
quantum statistics.

AEtrans < AE'rot < AEvib
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5. DISTRIBUTION OF MOLECULAR
SPEED

Probability and statistics: distribution functions (the probability of the occurrence
times)

occurrence times of the i event: n;, Y n; = N

distribution function: f; =n;/N, X%, fi =1

If the value of the i event is s;

the average value is sg,y = (s) = ZZLT‘:‘ =Ytsi =X fsi

the average of the square of the value is (Sz)avg = (s?) = Y fis?

the root-mean-square of the value is s,ms = +/(s2)

the standard deviation is o = /{(s; — (s))2) = /(s2) — (s)?

Continuous distribution: f; - f(x),YX fi=1- [ f(x)dx =1

the value is also a function of x, s(x)
the average of the value is (s) = [ s(x) f(x)dx

7)) = j SCORFGOdX, Srms = (52,0 = (52} — (512




5. DISTRIBUTION OF MOLECULAR
SPEED

The occurrence probability of a molecule with kinetic energy E
follows the Maxwell-Boltzmann distribution:

&
P(E) = cexp <— kB_T)

In a two dimensional system, the number of molecules is
proportional to the ring area and the energy distribution function:

P(E)2nvdv, E = mv?/2

In a three dimensional system, the number v,
of moleculesis N(v)dv « 4rnv?dv X exp(—E /kgT) A

N(v) = kv? exp(—mv?/2kgT) //%
Normalize it by: \ i — —Uy
m

N dv = = Uy
jo (wW)dv=N -k 4nN<2nkBT>

N W




5. DISTRIBUTION OF MOLECULAR
SPEED

Mathematical methods: N(v) = kv? exp(—mv?/2kgT) &f N(w)dv =N - k =?
mv? m XL
f(v) =exp| — et A=——- f(4,v) = exp(—Av )

2%, T 2k, T
dl *©
I1(4) = j exp(—Av?)dv » —— = f v? exp(—Av?) dv
0 dA ),

Let's calculate I(4), put the one-dimensional integration into a two-dimensional
space, and use the polar coordinate

(00) (0.0)

1(4) = lf exp(—Av?)dv - I?(4) = %f exp(—sz)dvjooexp(—sz)dv

7

1 (00) (0.0]
I%(A) = ZJ j exp(—Ax?) exp(—Ay?) dxdy
— 00 v —00 .

1 00 (2T
1%(4) = Zj J exp(—Ar?)rdodr = —% exp(—Ar?)d(—Ar?)
0o Jo . r=0



5. DISTRIBUTION OF MOLECULAR
SPEED

Number of molecules as a funco;rion of speed: N(v)

N(v) = kv? exp(—mv?/2kgT) &f Nw)dv =N - k =?
0

0 1 /m\2 0 dil 1 [@
= —_ 2 = —|— 2 — 2 = —— == |—
1(A) jo exp( Av )dv 2<A) —>j0 % exp( Av )dv i) /A3

— J Nw)dv = kj v2 exp(—mv?/2kgT) dv
0 0

L [sigmirs o (m 3/2
— — - —
A1 T & 2tkgT

o \3/2
ZﬂkBT> v? exp(—mv?/2kgT)

N(v) = 47TN<



5. DISTRIBUTION OF MOLECULAR
SPEED

The average speed of the gas molecules:

3/2
27TkBT> v? exp(—mv?/2kgT)

N®) = 41N <

3/2 o

> f v3 exp(—mv?/2kgT) dv
0

1 oo
= 19 = = — N =4
Vavg = U = (V) N,[O vN(v)dv = 4n (27thT

1(4) = jmexp(—sz)dv
0

oo 1 oo
j v3exp(—Av?)dv = —— | v?d|exp(—Av?)]
0 24 Jy

V=00

v? TR e 1 1
| Ry, = —A4,2 el 42\ = =
_[ A exp( Av )L_O +AJO vexp( Av )dv A2 O d[exp( Av )] A2

= oo
1 m3/? 1 (2kgT)/? 8kyT
(v) = k—z = 4n = 2 =
2A w3/2(2kgT)3/2 2(m/2kgT)>? wl/2ml/2 mm



5. DISTRIBUTION OF MOLECULAR
SPEED

The average kinetic energy of the gas molecules:

3/2

— AN 2 —mv?/2kgT
N(w) =4n <2T[kBT> % exp( mv*/2kg )
1mv2 = 2mm - 3/2Joov4 exp(—mvz/Zk T) dv
2 2k T 0 b

* 1 [m (@ 1 @ n'/?

_ A2 :_/_ 2 . :_/ _ A-3/2

1(A) -[0 exp(—Av?)dv > A,fo v2 exp(—Av?) dv AVE 2

0 d
j v* exp(—Av?) dv = <— —)j v2 exp(—Av?) dv
0 da) Jy

3/2 5 _1/2 5/2
1 3 2kpT 3 : .
<—mv2> = 2nm< e ) z ( b ) = EkBT equipartition theory



5. DISTRIBUTION OF MOLECULAR
SPEED

The distribution function:

3/2
N(v) = 4nN <2T[k T> v? exp(—mv?/2kgT)
B
dN (v) —mviy,/2kpT 4 )2 ,~mvdy/2kgT [ _ TWVmp
dv i =0- vap e ~MVnp/2kp + Umpe MVmp/2kp _I{B—T =0
V=Ump
N(V)
. 2kgT 1.2x10%7} 1 mol N, molecules
mP | m 1.0x10%'}
8.0 x 10%
(v) = 8kgT ;
p— 6.0x 10

4.0x 1020} 4
= /{(p?) =
Frms %) 4/ m 2.0x10%}

900 K

500 1000

1500

v(m/s)



5. DISTRIBUTION OF MOLECULAR
SPEED

Example: Nine particles have speeds of 5.0, 8.0, 12.0, 12.0, 12.0, 14.0, 14.0, 17.0,
and 20.0 m/s. (a) Find the average speed. (b) What is the rms speed<¢ (c) What is

the most probable speed of the particles?

Distribution function
50+80+12.0%x34+14.0x2+17.0+ 20.0 4
(v) = = 12.7 (m/s) .
9 2 O
5.02 +8.02 +12.02 x 3+ 14.02 x 2+ 17.0%2 4+ 20.0% 0
Urms = 9 = 13.3 (m/s) 0 10 20

Ump = 12 (m/s)

30
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