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1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

Centripetal Acceleration, Centripetal Force
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1. The centripetal force is given at first, then 
the object can turn its moving direction.

2. The centripetal force is always directed to 

the center of the trajectory. Find out the 

plane of the circular trajectory at first.
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banked curves
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1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

𝑚𝑔𝜇𝑠 = 𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝑚
𝑣2

𝑟

𝑣′ =?𝑟′ = 2𝑟

𝑔𝜇𝑘 =
𝑣2

𝑟
=
𝑣′

2

𝑟′
𝑣′

2
=
𝑣2

𝑟
𝑟′ = 2𝑣2

𝑣′ = 2𝑣

Example: A car travels on a circular roadway of radius 𝑟.  The roadway is flat.  The car 

travels at a high speed 𝑣, such that the friction force causing the centripetal acceleration 

is the maximum possible value.  If the same car is now driven on another flat circular 

roadway of radius 2𝑟, and the coefficient of friction between the tires and the roadway 

is the same as on the first roadway, what is the maximum speed of the car such that it 

does not slide off the roadway?



1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝐹 = 𝑚
𝑣𝑚𝑎𝑥
2

𝑙

𝑣𝑚𝑎𝑥 =
𝐹𝑙

𝑚
=

50.0 × 1.50

0.500
= 12.2 (𝑚/𝑠)

Example: An object of mass 𝑚 = 0.500 kg is attached to the end of a cord whose 

length is 𝑙 = 1.50 m.  The object is whirled in a horizontal circle.  If the cord can 

withstand a maximum tension of 𝐹 = 50.0 N, what is the maximum speed the object 

can have before the cord breaks?



1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

Note that the string tension and the gravitational 

force give the necessary centripetal force.

𝑟

𝐿

𝑚

𝜃

𝑎𝑟 =
𝑣2

𝑟

𝑣 = 𝑟𝑎𝑟 = 𝑟𝑔 tan𝜃 = 𝑟2𝑔/ 𝐿2 − 𝑟2

𝑎𝑟 = 𝑔 tan𝜃 tan𝜃 =
𝑟

𝐿2 − 𝑟2
(a)

(b)

𝑇 =
2𝜋𝑟

𝑣
=

2𝜋𝑟

𝑟2𝑔/ 𝐿2 − 𝑟2
= 2𝜋

𝐿2 − 𝑟2

𝑔

Example: A small object of mass m is suspended from a string of length L.  The object 

revolves in a horizontal circle of radius r with constant speed v.  Find (a) the speed of 

the object, and (b) the period of revolution.

https://giphy.com/gifs/motion-vmBNJ7svk1jws



1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

Find out the plane of the circular motion at first, 

then find out the required centripetal force.

𝑁

𝑊 = 𝑚 Ԧ𝑔

Ԧ𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙

Ԧ𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝑁 +𝑊

Example: A curve of radius 𝑟 = 30 m is banked at an angle 𝜃.  Find 𝜃 for which a car 

can round the curve at 𝑣 = 40 km/h even if the road is covered with ice that friction is 

negligible.



1. NEWTON’S 2ND LAW IN UNIFORM 
CIRCULAR MOTION

𝑁

𝑊 = 𝑚 Ԧ𝑔

Ԧ𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙

𝜃

𝑎𝑟 = 𝑔 tan𝜃

𝑟 = 30 m 𝑣 = 40
𝑘𝑚

ℎ
= 11.1 (m/s)

𝑔 tan𝜃 =
𝑣2

𝑟
tan𝜃 =

𝑣2

𝑔𝑟
≅ 0.419

𝜃 ≅ 22.70

Example: A curve of radius 𝑟 = 30.0 m is banked at an angle 𝜃.  Find 𝜃 for which a car 

can round the curve at 𝑣 = 40.0 km/h even if the road is covered with ice that friction 

is negligible.
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2. NONUNIFORM CIRCULAR 
MOTION

ො𝑥

ො𝑦

𝜃

𝑚 Ԧ𝑔

𝑇

𝐹𝑟 = 𝑇 = 𝑚
𝑣 𝜃 2

𝑅
+𝑚𝑔 cos 𝜃

𝐹𝑡 = −𝑚𝑔 sin 𝜃

To solve the problem, you need to specify the condition 

that, for example, the gravitation totally gives the 

centripetal force as the sphere is on the top.

𝜃 = 𝜋, 𝑇 = 0, 
𝑚𝑣 𝜋 2

𝑅
−𝑚𝑔 = 0, 𝑣 𝜋 = 𝑔𝑅

Example: A small sphere of mass m is attached to the end of a cord of length R which 

rotates under the influence of the gravitational force in a vertical circle about a fixed 

point O.  Let us determine the tension in the cord at any instant when the speed of the 

sphere is v and the cord makes an angle theta with the vertical.



2. NONUNIFORM CIRCULAR 
MOTION

𝑣 𝜋 = 𝑔𝑅

𝐹𝑡 = −𝑚𝑔 sin𝜃 = 𝑚𝑎𝑡 = 𝑚
𝑑2𝑠

𝑑𝑡2
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𝑑 𝜔2/2
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= −𝑔 sin 𝜃

𝑑𝜃

𝑑𝑡

𝑅𝑑 𝜔2/2 = −𝑔 sin 𝜃 𝑑𝜃

ො𝑥

ො𝑦

𝜃

𝑚 Ԧ𝑔

𝑇

Example: A small sphere of mass m is attached to the end of a cord of length R which 

rotates under the influence of the gravitational force in a vertical circle about a fixed 

point O.  Let us determine the tension in the cord at any instant when the speed of the 

sphere is v and the cord makes an angle theta with the vertical.



2. NONUNIFORM CIRCULAR 
MOTION

𝑣 𝜋 = 𝑅𝜔 𝜋 = 𝑔𝑅 𝑅𝑑 𝜔2/2 = −𝑔 sin 𝜃 𝑑𝜃

𝑅න
𝜔= 𝑔/𝑅

𝜔 𝜃

𝑑 𝜔2/2 = −𝑔න
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𝜃
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2
−

𝑔

2𝑅
= 𝑔 cos 𝜃 + 1

𝑑𝜃

𝑑𝑡
= 𝜔 =

𝑔

𝑅
2 cos 𝜃 + 3

𝜔 𝜃 = 0 = 5
𝑔

𝑅

𝜔 𝜃 = 𝜋/2 = 3
𝑔

𝑅

Example: A small sphere of mass m is attached to the end of a cord of length R which 

rotates under the influence of the gravitational force in a vertical circle about a fixed 

point O.  Let us determine the tension in the cord at any instant when the speed of the 

sphere is v and the cord makes an angle theta with the vertical.



3. MOTION IN ACCELERATED FRAMES
Centripetal or Centrifugal Forces? What’s The Mechanism of Spin Dryer?



3. MOTION IN ACCELERATED FRAMES
The Coriolis Force:





3. MOTION IN ACCELERATED FRAMES

Typhoon is counterclockwise in the northern 
hemisphere of the Earth.

Northern Hemisphere      Southern Hemisphere

https://giphy.com/gifs/south-korea-10mG6dlMM4nWxi
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4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

Two Types of Resistive Force:

1. Objects in Liquid. The resistive force is 

proportional to the velocity.

Ԧ𝐹𝑟𝑒𝑠 = −𝑏 Ԧ𝑣

𝑚 Ԧ𝑔

−𝑏 Ԧ𝑣

2. Objects in Gas. The resistive force is 
proportional to the square of the speed.

Ԧ𝐹𝑟𝑒𝑠 = −
𝐷𝜌𝐴

2
𝑣2 ො𝑣

𝐷: drag coefficient (~0.6), 

𝜌: density of gas, 

𝐴: cross-sectional area

https://giphy.com/gifs/LKKzKm9jMdoli



4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

Object in Liquid. Start falling from rest.

𝑚 Ԧ𝑔

−𝑏 Ԧ𝑣

ො𝑥

𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 − 𝑏𝑣

න
0

𝑣 𝑚

𝑚𝑔 − 𝑏𝑣
𝑑𝑣 = න

0

𝑡

𝑑𝑡

𝐹 = 𝑚𝑔 − 𝑏𝑣 = 𝑚𝑎 𝑣𝑡 =
𝑚𝑔

𝑏

−
𝑚

𝑏
ln

𝑚𝑔 − 𝑏𝑣

𝑚𝑔
= 𝑡 𝑣 𝑡 =

𝑚𝑔

𝑏
1 − 𝑒−

𝑏𝑡
𝑚

Time Constant: 𝜏 = 𝑚/𝑏



4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

(a) 𝑣𝑡 = 0.05(𝑚/𝑠) =
𝑚𝑔

𝑏

𝑏 =
0.002 × 9.8

0.05
= 0.392(𝑘𝑔/𝑠)

𝜏 =
𝑚

𝑏
= 5.1 × 10−3(𝑠)

(b)

𝑣 𝑡 =
𝑚𝑔

𝑏
1 − 𝑒−

𝑏𝑡
𝑚

𝑡 = −𝜏 ln
𝑚𝑔 − 𝑏 ×

0.9𝑚𝑔
𝑏

𝑚𝑔
= 11.7 × 10−3(𝑠)

Example: A Sphere Falling in Oil.

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil.  The 

sphere approaches a terminal speed of 5.00 cm/s.  Determine (a) the time constant 𝜏
and (b) the time it takes the sphere to reach 90% of its terminal speed.



4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

For objects dropping in air, terminal speed is:

𝐹 = 𝑚𝑔 −
𝐷𝜌𝐴

2
𝑣2 = 𝑚𝑎

The condition to reach the terminal speed is 𝑎 = 0.

𝑚𝑔 −
𝐷𝜌𝐴

2
𝑣𝑡
2 = 0 𝑣𝑡 =

2𝑚𝑔

𝐷𝜌𝐴

For a human body in the free fall motion in air, 

the terminal speed is:

𝑣𝑡 =
2 × 60 × 9.8

0.6 × 0.028/0.0224 × 1
≅ 39.6

𝑚

𝑠
= 143(

𝑘𝑚

ℎ
)

Object Mass (kg) Cross-Section (m2) Vt (m/s)

Sky diver 75 0.70 60

Bassball 0.145 4.2x10-3 43

Golfball 0.046 1.4x10-3 44

Hailstone 4.8x10-4 7.9x10-5 14

Raindrop 3.4x10-5 1.3x10-5 9.0
https://giphy.com/gifs/3ohs7U04OERhUtefja



4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

Object in Air:

𝑣𝑡1 = 97(𝑘𝑚/ℎ)𝑣𝑡 =
2𝑚𝑔

𝐷𝜌𝐴

𝑣𝑡2
𝑣𝑡1

=
𝐴1
𝐴2

𝑣𝑡2 =
97

2
= 69(𝑘𝑚/ℎ)

Example: If a falling cat reaches a first terminal speed of 97 km/h while it is tucked in 

and then stretches out, doubling A, how fast is it falling when it reaches a new terminal 

speed?



4. MOTION IN THE PRESENCE OF 
RESISTIVE FORCE

Object in Air:

𝐴 = 𝜋𝑅2 = 𝜋 0.0015 2 = 7.1 × 10−6(𝑚2)

𝑚 = 1000 × 4𝜋 0.0015 3/3 = 1.4 × 10−5(𝑘𝑔)

𝑣𝑡 =
2𝑚𝑔

𝐷𝜌𝐴
=

2 × 1.4 × 10−5 × 9.8

0.6 × 1.2 × 7.1 × 10−6
= 7.3

𝑚

𝑠
= 26(

𝑘𝑚

ℎ
)

Example: A raindrop with radius R = 1.5 mm falls from a cloud that is at height h = 

1200 m above the ground. The drag coefficient D for the drop is 0.60. Assume that the 

drop is spherical throughout its fall. The density of water 𝜌𝑤 is 1000 kg/m3, and the 

density of air 𝜌𝑎 is 1.2 kg/m3.



5. NUMERICAL INTEGRATION –
EULER’S METHODS

If you cannot solve the exact solutions of x(t), you need to 
express it numerically.  In the real world you may always 

need the numerical representation of motion.

B3=B2+0.1

C3=C2+0.1*D2

∆𝑥 = 0.1

D3=0.1*SQRT(C3)+0.4*B3*B3

Example: Consider the initial value problem 
𝑑𝑦

𝑑𝑥
= 0.1 𝑦 + 0.4𝑥2, 𝑦 2 = 4. Use 

Euler’s method to obtain an approximation of 𝑦 2.5 using ∆𝑥 = 0.1 and ∆𝑥 = 0.05.

x y y'

0 2 4 1.8

1 2.1 4.18 1.9685

2 2.2 4.3768 2.1452

3 2.3 4.5914 2.3303

4 2.4 4.8244 2.5236



5. NUMERICAL INTEGRATION –
EULER’S METHODS

B3=B2+0.05

C3=C2+0.05*D2

∆𝑥 = 0.05

D3=0.1*SQRT(C3)+0.4*B3*B3

x y y'

0 2 4 1.8

1 2.05 4.09 1.883237

2 2.1 4.184162 1.968552

3 2.15 4.282589 2.055944

4 2.2 4.385387 2.145413

5 2.25 4.492657 2.236959

6 2.3 4.604505 2.330581

7 2.35 4.721034 2.426279

8 2.4 4.842348 2.524053

9 2.45 4.968551 2.623902

10 2.5 5.099746 2.725826

Example: Consider the initial value problem 
𝑑𝑦

𝑑𝑥
= 0.1 𝑦 + 0.4𝑥2, 𝑦 2 = 4. Use 

Euler’s method to obtain an approximation of 𝑦 2.5 using ∆𝑥 = 0.1 and ∆𝑥 = 0.05.





5. NUMERICAL INTEGRATION –
EULER’S METHODS

a = 2.0 m/s2, ∆𝒕 = 𝟎. 𝟏 s, v(0) = 0, x(0) = 0 - v(t) = at, x(t)=1/2*at2

Step t v x v(t) x(t)

0 0. 0 0 0 0

1 0.1 0.2 0 0.2 0.01

2 0.2 0.4 0.02 0.4 0.04

3 0.3 0.6 0.06 0.6 0.09

4 0.4 0.8 0.12 0.8 0.16

Example: Compare the numerical results with the integrated function for the constant 

acceleration of 𝑎 = 2.0 (m/s2), 𝑣 0 = 0 (m/s), 𝑥 0 = 0 (m).
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