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Chapter 37 Diffraction Patterns and 

Polarization 

37.1 Introduction to Diffraction Pattern 

Light suffering from scattering will enhance the feature of the point-like source. For 

the point-like source, the divided light sources display strong interference effects. 

 

 

37.2 Dffraction Pattern from Narrow 

Slits 
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Diffraction – one kind of interference 

The first zeroes in the intensity occur at 
2
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2


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a
 (destructive interference). 

Zero intensity occurs at  ma =sin . Note that the condition is incorrect at 0=m . 

 

Example: In a lecture demonstration of single-slit diffraction, a laser beam of 

wavelength 700 nm passes through a vertical slit 0.2 mm wide and hits a screen 6 m 

away. Find the width of the central diffraction maximum on the screen. 
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Intensity of Single-Slit Diffraction Patterns 

Assume N equally spaced sources: 

( )tkxA −sinmax  

divided into N subwaves 

( ) ( ) nAntkxA +=+− sinsin 00  
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Assume the phase difference between 
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Interference-Diffraction Pattern of Two Slits 

The separation d of the two slits is 10 times the width 

a of each slit --> 

 

d produces interference at  nd =1sin  

a produces zero intensity at 

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
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ad   --> 21    --> 21 yy   

 

Example: Two slits of width a = 0.015 mm are separated by a distance d = 0.06 mm 

and are illuminated by light of wavelength 650=  nm. How many bright fringes 

are seen in the central diffraction maximum? 

width of diffraction maximum: 
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Intensity of Two-Slit Diffraction Patterns 
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37.3 Resolution of Single-Slit and 
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Circular Aperatures 

Single Slit: From diffraction pattern of a single slit, the first minimum occurs at 

 =sina  

 

Single Hole: The angle   subtended by the first diffraction minimum is related to 

the wavelength and the diameter of the opening D by 

 22.1sin min =D  

 

Two point sources subtended an angle 

  at a circular aperture far from the 

sources: 

Rayleigh’s criterion for resolution: 

D
c


 22.1~min=  

Example: Light of wavelength 500 nm, near the center of the visible spectrum, enters 

a human eye. Although pupil diameter varies from person to person, estimate a 

daytime diameter of 2 mm. (a) Estimate the limiting angle of resolution for this eye, 

assumes its resolution is limited by diffraction. 

 22.1sin min =D  → 4

min 103
2000000

500
22.122.1 −==

D


 rad 

(b) Determine the minimum separation distance d between two point sources that the 

eye can distinguish if the point sources are a distance L = 25 cm from the observer. 

L

d
  → 34 10810325 −− === Ld  cm 

 

Example: The Keck telescope at Mauna Kea, Hawaii, has an effective diameter of 10 

m. What is its limiting angle of resolution for 600-nm light? 
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overlapped 

diffraction pattern 
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37.4 The Diffraction Grating 

 md bright =sin  

 

Propagation vector: kkikk zx
ˆˆ+=


, Path – displacement vector: 0

ˆ ridr


+=  

The phase difference: ( ) ndmkimdk x  2ˆ ===


 for constructive interference 

The condition of 
d

k x

2
=  satisfies the requirement. 

Thus the diffraction pattern gives the image of k-space for a one-dimensional lattice 

system. 
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37.5 Diffraction of X-Rays by Crystals 

 

 

1. The Bragg Law. 

2dsin()=n  

 

2. Reciprocal Lattice Vectors. 

We know that when we talk about a wave, we may mention about is wavelength or 

other wave related parameters. Moreover, we often use wave vector k which is the 

reciprocal of the wavelength rather than wavelength to describe the wave. 

 

The wave vector k is related to the length according to the relation  /2=k . Or we 

may say lengthk /2= . 

x kx 

x=0 

d 

kx=0 

2/d 
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Here we find that the reciprocals of the length or the wave vector could be important 

parameters. 

In our previous descriptions, we mention about the translational vector of the lattice. 

kaujauiaurr ˆˆˆ' 3322110 +++=


 This is the real space or length vector. 

From it, we may obtain the special wave vector in k (wave vector or momentum) 

space. 
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The three vectors are in k space and are called reciprocal lattice vectors. 

321 blbkbhG


++  

Given a wave traveling in the x-direction of the 2D lattice 

 

 

 

 

The wave function of a wave may be expressed as ( ) ( )trkAtkxA  −=−


sinsin  

ixr ˆ=


 → ikxk ˆ=


 

The wave vector k


 points to the traveling direction of the wave. 

For the special wave having the same spatial period as the atomic position, its wave 

vector must be i
a

k ˆ2
=


, where a  is the spatially periodic distance. 

The wave traveling in y-direction may have a wave vector jkk y
ˆ=


. The wave 

traveling in any directions can be described by jkikk yx
ˆˆ +=


. 

The special wave having the same spatial period as atomic position will have the 

wave vector of j
b

ni
a

mk ˆ2ˆ2 
+=


, where nm,  are integers. 

Why do we talk about the special wave which consists of an atomic periodicity? 

 

 

3. X-Ray Diffraction and Fourier Transform. 

Why do we need the reciprocal lattice vectors in the k or momentum (or the reciprocal 

of the wavelength) space. The origin comes from electromagnetic waves or X-Ray 

corresponding k space 
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diffraction. 

For a plane wave, its wave function can be expressed as 

( ) ( )trkEtrE −=


sin, 0  

What’s the direction of its wave vector k? It’s just the direction of this EM wave. 

 

 

It means that you can produce any specified k direction by adjusting the EM wave 

direction. 

Now we know the wave vector of an EM wave. Moreover, the vector can be added or 

subtracted: 

 

ABOAOB +=  

Then we may imagine that the wave vector or the EM wave can have this behavior. 

 

If one atom reflect the EM to r’, the EM wave can be described 

by r+2a 

 

 

Now we can calculate the X-Ray diffraction: 

The reflected EM wave function 

, from the superposition rule, is: 

( )( ) +++=
3,2,1

33221103,2,1 exp
uuu

uuu auauaurkA


  

For the constructive interference, the wave vector change k


  shall satisfy a simple 

condition of ( ) ( )2332211 nauauauk =++


. 

Here we define another translational vector of the reciprocal lattice as 

332211 bvbvbvG


++=  → we find the coincidence of 

( ) ( )( )2332211332211 uvuvuvauauauG ++=++


 

We then conclude that the change of the EM wave vector can be expressed as the 

translational vector of the reciprocal lattice. 

Gk


=  → using EM wave, we can see the wave vector space 

 

k

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37.6 Polarization of Light Waves 

1. plane polarized or linearly polarized EM waves 

2. elliptically polarized EM waves 

Polarization by Selective Absorption 

Polaroid 

perpendicular to the chain: pass 

 

( )2cosEI    

→ 2

0 cosII =  (Law of Malus) 

Specific Quantum Feature: 

 

 

 

 

 

 

 

Once the x’-filter intervenes and selects the x’-polarized beam, it is immaterial 

whether the beam was previously x-polarized. 

 

Correspondence between the SG experiment and light polarization filter: 

Sz± atoms <-> x-, y-polarized light 

Sx± atoms <-> x’-,y’-polarized light 

Electric field of light wave: 

 

x 

y 
x' y' 

E 

x filter y filter 

x filter x' filter y filter 
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( ) ( ) ( )tkz
E

ytkz
E

xtkzEx  −+−=− cos
2

ˆcos
2

ˆcos'ˆ 00
0

 

( ) ( ) ( )tkz
E

ytkz
E

xtkzEy  −+−−=− cos
2

ˆcos
2

ˆcos'ˆ 00
0

 

 

We might be able to represent the spin state of a silver atom by 

−++=+ ;
2

1
;

2

1
;

?

zzx SSS  

−++−=− ;
2

1
;

2

1
;

?

zzx SSS  

Symmetry arguments tell that the Sy± states are similar to Sx± states, how can we 

write it decomposed into Sz± states? 

 

Polarization by Reflection: 

The polarization of the reflected light depends on the angle of incidence. If the angle 

of incidence is 0o, the reflected beam is unpolarized. For other angles, the reflected 

light is polarized to some extent. For the particular case of Brewster’s condition, the 

reflected light is completely polarized. 

 

Polarizing angle p  

( ) p

p

p

n

n









tan

90sin

sin

sin

sin

2

1

2

2 =
−

==  Brewster’s Law (David Brewster 1781-1868) 
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Polarization by Double Refraction 

 

 

Polarization by Scattering 

 

 

 


