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Chapter 25 Capacitance and 

Dielectrics 

Work must be done when charging a conductor. The energy of the work is the same as 

the energy require to construct electric fields surround the conductor. Use the energy 

and electric field of a capacitor, we will derive the energy density of electric field. 

25.1 Definition of Capacitance 

25.2 Calculating Capacitance 

Measure of the capacity to store charge: 
V

Q
C =  

 

Unit: farad (F): 1 F = 1 C / V;  1 F = 10-6 F;  1 pF = 10-12 F 

 

The ratio of charge Q to the potential depends on the size and the shape of the conductor. 

 

Capacitors 

A device consisting of two conductors 

carrying equal but opposite charges is called 

a capacitor. 

 

Parallel Plate Capacitor 

 𝐸 = 4𝜋𝑘𝜎, 𝑉 = 4𝜋𝑘𝜎𝑑 = 4𝜋𝑘𝑑𝑄/𝐴 
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Cylindrical Capacitor 
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Spherical Capacitor 
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Self-Capacitance 

The potential of a spherical conductor of radius R carrying a charge Q is 
R

kQ
V = . 

The self-capacitance of a spherical conductor is: 

R
k
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Q
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25.3 Combination of Capacitors 

Capacitors Connected in Parallel 

Obtain V and Q to calculate C. 

VVV == 21  & 111 /VQC =  
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( )VCCVCVCQQQ 21221121 +=+=+=  

21/ CCVQC +==  

Capacitors connected in parallel: 

...4321 ++++= CCCCCeq  

Capacitors connected in series 
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Capacitors connected in series: 
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Example: Two capacitors are removed from the battery and 

carefully connected from each other. 

21 VV =  & 
1

1
1

V

Q
C =  

2

2

1

1

C

Q

C

Q
=  & CQQ 9621 =+  

Capacitors in Series and in Parallel 
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25.4 Energy Stored in a Charged 

Capacitor 
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Electrostatic Field Energy (derived from energy 

stored in a capacitor) 
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Electrostatic Energy Density: 
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Example: Calculate the energy stored in the conductor 

carrying a charge Q. 
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25.5 Capacitors and Dielectrics 

When the space between the two conductors of a capacitor is occupied by a dielectric, 

the capacitance is increased by a factor   ( 1 ) that is characteristic of the 

dielectric. 

 

If the dielectric field is 0E  before the dielectric slab is inserted, after the dielectric 

slab is inserted between the plates the field is 


0E

E =  --> the potential is 
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The capacitance of a parallel-plate capacitor filled with a dielectric of constant   is 
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Vacuum: v = 1 

the Dielectric:  > 1 

material: m > 0 
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Energy Stored in The Presence of a Dielectric 

The energy stored in a capacitor is: 
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The energy of a capacitor with the dielectric is 
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1. You lose electric force to separate the charge. 

2. You enlarge the charging capacity as you know the dielectric will breakdown in a 

high electric field. (If the same charge --> you lose some electric field,) 

3. You increase the energy per unit volume. 

 

Combination of Capacitors 

Example: A parallel-plate capacitor has square plates of edge length 10 cm and a 

separation of d = 4 mm. A dielectric slab of constant 2=  has dimensions 10 cm X 

10 cm X 4 mm. (a) What is the capacitance without the dielectric? (b) What is the 

capacitance with the dielectric? (c) What is the capacitance if a dielectric slab with 

dimensions 10 cm X 10 cm X 3 mm is inserted into the 4-mm gap? 

(a) 
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Example: The parallel plates of a given capacitor are square with 
2aA =  and 

separation distance d. If the plates are maintained at a constant potential V  and a 

Vacuum: v = 1 

the Dielectric:  > 1 

material: m > 0 

- + E0 

E 
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square of dielectric slab of constant  , area 2aA = , thickness d  is inserted 

between the capacitor plates to a distance x as shown in the following figure. Let 0  

be the free charge density at the conductor-air surface. (a) Calculate the free charge 

density   at the capacitor-dielectric surface. (b) What is the effective capacitance? 

(c) What is the magnitude of the required force to prevent the dielectric slab from 

sliding into the plates? 
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The first term is due to charge redistribution and the second is due to the additional 

charges supplied by the constant voltage. 

 

 

Example: A parallel plate capacitor with plates of area LW and separation t has the 

region between its plates filled with wedges of two dielectric materials. Assume t is 

much less than both W and L. (a) Please determine its capacitance. 

The thickness of the k1 material decrease as a function of 
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The series connected capacitance 
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The total parallel connected capacitance 
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25.6 Electric Dipole in an Electric Field 

Inside the material → to make sure that the electric field lines are from the positive 

charge to the negative charge 

 

 

 

 

 

If the field is uniform, it can rotate the dipole. 
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25.7 An Atomic Description of 

Dielectrics 
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Example: A hydrogen atom consists of a proton nucleus of charge +e and an electron 

of charge –e. The charge distribution of the atom is spherically symmetric, so the atom 

is nonpolar. Consider a model in which the hydrogen atom consists of a positive charge 

+e at the center of a uniformly charged spherical cloud of radius R and total charge –e. 

Show that when such an atom is placed in a uniform external field E


, the induced 

dipole moment is proportional to E


 ; that is, Ep


=  , where    is called the 

Qtotal = 0 

Qtotal < 0 Qtotal > 0 

bound charge 

E0 E 

bound charge 
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polarizability. 
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