Chapter 23 Gauss’s Law

23.1 Electric Flux

For a surface perpendicular to E , the electric flux is ¢ = EA.

Units: N*m?%/C

® =EA

The mathematical quantity that corresponds to the number of field lines penetrating a
surface is called the electric flux ¢.

A = A cosb
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Az cosf = A].

The electric flux out of the enclosed surface = charge
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Example: Flux through a cube ( | .
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Total flux of the enclosed surface do not change --> charge

Do not mix the vector field representation with the electric field line representation.

23.2 Gauss’s Law

Electric fields from symmetrical charge distribution can be easily calculated using

Gauss’s law.
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The net number of lines out of any surface enclosing the charges is proportional to the
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net charge enclosed by the surface.

Quantitative Statement of Gauss’s Law
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System containing multiple charges:

Dot IE dA=47kQ,,. - Gauss’s law
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Example: An electric field is E =(200_N/C)i in the region x > 0 and

E =—(200_N/C)i in the region x < 0. An imaginary soup-can shaped surface of

length 20 cm and radius R = 5 cm has its center at the origin and its axis along the x
axis, so that one end is at x = +10 cm and the other is at x =-10 cm. (a) What is the
net outward flux through the entire closed surface? (b) What is the net charge inside

the closed surface?
(8) ¢=(200_N/C)i-(z(0.05_m) } +(~200_N/C)i -(z(0.05_m})-i)=3.14(N

m?/C)
(b) Q=¢¢=278 (pC)

23.3 Application of Gauss’s Law to Various Charge

Distribution

Symmetry = Use integration
(choose spherical, cylindrical, or Cartesian coordinate systems)

-> Use Gauss’s law will be easier to solve the problem.

Gauss’s Law: §I§ -da =@, = 47KQ, ¢ 0ed
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Example: Electric Fields Due to Two Infinite Planes
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Spherical Symmetry
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E Due to a Thin Spherical Shell of Charge

r>R --> 47zr2E=g
&
r<rR --> 47zr2E=2
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Example: Find the electric field outside and inside a

uniformly charged solid sphere of radius R carrying a total

charge Q. K
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Describe Divergence in Spherical

Coordinate System

Cylindrical Symmetry - -
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23.4 Conductors in Electrostatic Equilibrium
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1. Because the charges are arranged to
have zero electric field inside the
conductor. (If the field is not zero, the @
charges will move without stop.)

2. The charge resides on surfaces of a
conductor.

3. The electric field is perpendicular to the conductor surface. AE across the

. o
boundary surface is equal to —.
o

4. You can also use Gauss’s law to derive the same result.

Discontinuity of E,
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Charge --> The Source to increase or decrease electric fields

E= E'+Edisk
E.=E+2{ & E_=E-2{ > AE=E_ -E_ =210
&y 280 &

Derivation of Gauss’s Law From Coulomb’s Law
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The total solid angle of the spherically symmetrical space is

Ao =25
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The outgoing electric flux through a small area AA is A¢g=E -AAA.

A¢=t—‘j(ﬂﬁ)AA= kgAQ > ¢, = [dgp=§(E-nla=kafde =47k



