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Lecture 20 The Kinetic Theory of Gases 

20.1 Molecular Model of an Ideal Gas 

1. The number of molecules in the gas is lage, and the 

average separation between them is large compared 

with their dimensions. 

2. The molecules obey Newton’s law of motion, but as 

a whole they move randomly. 

3. The molecules interact only by short-range force 

during elastic collisions. 

4. The molecules make elastic collisions with the walls 

5. The gas under consideration is a pure substance; 

that is, all molecules are identical. 
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Molecular Interpretation of Temperature 
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=  The temperature is a direct measure of average molecular 

kinetic energy. 

 

Theorem of equipartition of energy: 
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Total translational kinetic energy: nRTTNkmvNE Bk
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Example: A Tank of Helium 

A tank of volume 0.3 m3 contains 2 mole of helium gas at 20oC.  Assuming the 

helium behaves like an ideal gas, (a) find the total internal energy of gas.  (b) What is 

the rms speed of the atoms? 
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20.2 Molar Specific Heat of an Ideal Gas 

Energy Conservation: dWdQdE +=  

Ideal Gas: nRTE
2

3
int = , R = 8.31 J/mol K, nRTPV =  

Constant volume: TnCQ v=  
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 Cp Cv Cp-Cv Cp/Cv 

He 20.8 12.5 8.33 1.67 

H2 28.8 20.4 8.33 1.41 

CO2 37 28.5 8.5 1.31 

 

Constant pressure: TnCQ p=  

dWdQdE += , PdVdTnCdTnC Pv −= , nRdTPdV =  

nRdTdTnCdTnC Pv −=  
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RCC vp +=  → ideal gas RCp
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Example: A cylinder contains 3.00 mol of helium gas at a temperature of 300 K. 

(a) If the gas is heated at constant volume, how much energy must be transferred by 

heat to the gas for its temperature to increase to 500 K? 

(b) How much energy must be transferred by heat to the gas at constant pressure to 

raise the temperature to 500 K? 

(a) TnCQ V= , RCV
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(b) TnCQ P= , RCP
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20.3 Adiabatic Processes for an Ideal Gas 

Energy Conservation: dWdQdE +=  

Ideal Gas: nRTE
2

3
int = , R = 8.31 J/mol K, nRTPV =  

 

222111 nRTVPnRTVP ==  

 

dWdE =  

PdVdTnCv −=  -- (1) 

nRTPV =  

nRdTVdPPdV =+  -- (2) 
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since nRTPV = , constTV =−1
 

 

Example: A Diesel Engine Cylinder 

The fuel-air mixture in the cylinder of a diesel engine at 20.0oC is compressed from an 

initial pressure of 1 atm and volume of 800 cm3 to a volume of 60 cm3.  Assuming 

that the mixture behave as an ideal gas with  = 1.4 and that the compression is adiabatic, 

find the final pressure and temperature of the mixture. 
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20.4 The Equipartition of Energy 

The theorem of equipartition of energy: at 

equilibrium , each degree of freedom contributes, 

on the average, TkB
2

1
 of energy per molecule 

 

Monatomic gas: three degrees of freedom 

more complex molecules, the vibrational and 

rotational motions contribute to the internal energy 

 

Diatomic gas: 

including rotational energy: TNkE B
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Agrees with equipartition theorem at high 

temperature → classical limit, Boltzmann 

statistics 

 

A Hint of Energy Quantization: 

 

classical statistics 

or quantum statistics 

 

energy level splitting: 

vibrationrotationntranslatio EEE   

20.5 Distribution of Molecular Speeds 

Distribution functions (number of occurrence times): 
N

n
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The average value will be =
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Change to the scheme of continuous distribution: 
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Maxwell-Boltzmann distribution function: ( ) kT
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Number of atoms with speed v: ( ) kT
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Example: A System of Nine Particles 



 7 

Nine particles have speeds of 5, 8, 12, 12, 12, 14, 14, 17, and 20 m/s.  (a) Find the 

average speed. 

smv /7.12=  

(b) What is the rms speed? 

smvvrms /3.132 ==  

(c) What is the most probable speed of the particles?  

12m/s 

 


