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Lecture 12 Static Equilibrium Elasticity 

12.1 The Rigid Object in Equilibrium 

1. The net external force acting on the body must remain zero: 

0= iF


 

2. The net external torque about any point must remain zero: 

0= i


 

0=F


, 0== F
dt

Pd 


, constP =
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, and  

0=
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, 0== 




dt

Ld
, constL =


 → such objects are in equilibrium 

We shall simplify matters by considering only situations in which the forces that act on 

the body lie in the xy plane. This means that the only torques that can act on the body 

must tend to cause rotation around an axis parallel to the z axis. With this assumption, 

we eliminate one force equation and two torque equations. 

 

12.2 More on the Center of Gravity 

let W


 be the center of gravity 

WrCOGnet


=  

 

if g


  is the same for all elements of a body, then the body’s center of gravity is 

coincident with the body’s center of mass 

Proof: 

giii Fx= , gcoggiii FxFx ===  , iigi gmF = , iig gmF =  

if gg i = , )()(  = gmxgmx icogii , 



=

i

ii

cog
m

xm
x  

 

12.3 Examples of Rigid Objects in 
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Equilibrium 

0=F


, 0=


 

 

Example: 

Standing on a horizontal beam 

A uniform horizontal beam of length 8 m and weight 200 N is attached to a wall by a 

pin connection.  Its far end is supported by a cable that makes an angle of 53o with the 

horizontal.  If a 600-N man stands 2 m from the wall, find the tension in the cable and 

the force exerted by the wall on the beam. 

 

6002200453sin8 += oT  

NT 313=  

053cos =− o

x TF  

060020053sin =−−+ o

y TF  

NFx 188= , 550=yF  

 

Example: The leaning ladder 

A uniform ladder of length l   and mass m rests 

against a smooth, vertical wall.  If the coefficient of 

static friction between ladder and the ground is 

4.0=s  , find the minimum angle min   such that 

the ladder does not slip. 
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2222
tan min =====  

25.1tan min = , o51min =  

min   →  sin2/cos PRmgR  ; min   →  sin2/cos PRmgR   
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Example: A wheel of mass M and radius R rests on a horizontal surface against a step 

of height h (h < R).  The wheel is to be raised over the step by a horizontal force F


 

applied to the axle of the wheel as shown.  Find the minimum force Fmin necessary to 

raise the wheel over the step. 

( ) MgxhRF =−min  

( )22 hRRx −−=  

=minF  

 

Couples 

Two forces that are equal and opposite are called a couple. 

The torque produced by this couple about an arbitrary point O is 

( ) 12112112211 FrrFrFrFrFr


−=−=+= , do not depend on the choice of O. 

The torque produced by a couple is the same about all points in space. 

 

Stability of Rotational Equilibrium 

 

 

Indeterminate structures 

It is easy to find such problems. In the sample problem above, for example, we could 

have assumed that there is friction between the wall and the top of the ladder. Then 

there would have been a vertical frictional force acting where the ladder touches the 

wall, making a total of four unknown forces. With only three equations, we could not 

have solved this problem. 

Consider also an unsymmetrically loaded car. What are the forces—all different—on 

the four tires? Again, we cannot find them because we have only three independent 

equations with which to work. Similarly, we can solve an equilibrium problem for a 

table with three legs but not for one with four legs. Problems like these, in which there 
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are more unknowns than equations, are called indeterminate. 

To solve such indeterminate equilibrium problems, we must supplement equilibrium 

equations with some knowledge of elasticity, the branch of physics and engineering that 

describes how real bodies deform when forces are applied to them. The next section 

provides an introduction to this subject. 

 

12.4 Elastic Properties of Solids 

stress: deforming force per unit area, stress = 
A

F
 

strain: unit deformation, strain = 
L

L
 

modulus of elasticity: stress = modulus x strain, Youang’s modulus: 

LL
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strain

stress
Y

/

/


==  

yield strength: Sy, if the stress is increased beyond Sy of the specimen, the specimen 

becomes permanently deformed. 

 

Tension & Compression 

L

L
E

A

F 
= , E: Young’s modulus 

 

Shear Stress 
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shear modulus (torsion modulus): 
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Hydraulic Stress 

p is the fluid pressure on the object 

V

V
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
−=  

 

Some Elastic Properties of Selected Materials of Engineering Interest 

Material Density (kg/m3) Young’s Modulus 

E (109 N/m2) 

Ultimate Strength 

Su (106 N/m2) 

Yield Strength Sy 

(106 N/m2) 

Steela   7860   200   400   250   

 
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Aluminum   2710   70   110   95   

Glass   2190   65   50b   —   

Concretec   2320   30   40b   —   

Woodd   525   13   50b   —   

Bone   1900   9b   170b   —   

Polystyrene   1050   3   48   —   

aStructural steel (ASTM-A36). 

bIn compression. 

cHigh strength. 

dDouglas fir. 

 

Sample Example: 

A structural steel rod has a radius R of 9.5 mm and a length L of 81 cm. A 62 kN force 

F


stretches it along its length. What are the stress on the rod and the elongation and 

strain of the rod? 
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Example: 

A solid brass sphere is initially surrounded by air, and the air pressure exerted on it is 

1.0 X 105 N/m2 (normal atmosphere pressure). The sphere is lowered into the ocean to 

a depth where pressure is 2.0 X 107 N/m2. The volume of the sphere in air is 0.50 m3. 

By how much does this volume change once the sphere is submerged? 
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10102.6 =B N/m2  

 


