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Lecture 06 Circular Motion and Other 

Applications of Newton’s Laws 

6.1 Newton’s Second Law for a Particle in 

Uniform Circular Motion 
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We call them centripetal acceleration and centripetal force 

because they are directed toward the center of the circle. 

 

Example: A car travels on a circular roadway of radius r.  The roadway is flat.  The 

car travels at a high speed v, such that the friction force causing the centripetal 

acceleration is the maximum possible value.  If the same car is now driven on another 

flat circular roadway of radius 2r, and the coefficient of friction between the tires and 

the roadway is the same as on the first roadway, what is the maximum speed of the car 

such that it does not slide off the roadway? 
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Example: How fast can it spin? 

An object of mass 0.500 kg is attached to the end of a cord whose length is 1.50 m.  

The object is whirled in a horizontal circle.  If the cord can withstand a maximum 

tension of 50 N, what is the maximum speed the object can have before the cord breaks? 
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Example: The Conical Pendulum 

A small object of mass m is suspended from a 

string of length L.  The object revolves in a 

horizontal circle of radius r with constant speed 

v.  Find (a) the speed of the object, and (b) the 

period of revolution 
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Banked Curves 

See what happens if a particle moves with varying 

speed in a circular path. 

 

Example: A curve of radius 30 m is banked at an 

angle   .  Find    for which a car can round the 

curve at 40 km/h even if the road is covered with ice 

that friction is negligible. 

sinmg  along the road surface must be canceled by 

the required force of circular motion: 
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6.2 Nonuniform Circular Motion 

Example: Follow the Rotating Ball 

A small sphere of mass m is attached to the end of a cord of length R which rotates 

under the influence of the gravitational force in a vertical circle about a fixed point O.  

Let us determine the tension in the cord at any instant when the speed of the sphere is 

v and the cord makes an angle theta with the vertical. 
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6.3 Motion in Accelerated Frames 

Is it in an inertia frame? 

 

In car: if the friction force is not sufficiently great to allow somebody sitting in car to 

travel along the circular path, he may experience a ghost force 

If he still move with the car, he may experience centrifugal force.  If he does not move 

with the car, he may be throw away in ?? direction. 

 

How does the drying machine work? 

 

 

 

 

 

 

On the Earth: Coriolis force?? 

 

counterclockwise in the northern 

hemisphere and clockwise in the 

southern hemisphere 

 

 

 

 

 

 

 

 

 

In an accelerated train: 

A B C 

In the frame of the 

Earth, you believe that 

a force exists to drag 

the body. 

v v 

a 

A B C A B C 

http://earthobservatory.nasa.gov/NaturalHazards/Archive/Jul2003/terra_imbudo_23jul03_250m.jpg
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6.4 Motion in the Presence of Resistive 

Force 

Model 1: Resistive force proportional to objective velocity 
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Example: A sphere falling in oil 

A small sphere of mass 2.00 g is released from rest in a large vessel filled with oil.  

The sphere approaches a terminal speed of 5.00 cm/s.  Determine (a) the time 

constant   and (b) the time it takes the sphere to reach 90% of its terminal speed. 
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Model 2: Resistive force proportional to object speed square – Air Drag at High Speeds 
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for a human body in free fall motion with a square of velocity dependent drag force, 
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the terminal speed is: 
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Object Mass (kg) Cross-Section (m2) Vt (m/s) 

Sky diver 75 0.70 60 

Bassball 0.145 4.2x10-3 43 

Golfball 0.046 1.4x10-3 44 

Hailstone 4.8x10-4 7.9x10-5 14 

Raindrop 3.4x10-5 1.3x10-5 9.0 

 

Example: If a falling cat reaches a first terminal speed of 97 km/h while it is tucked in 

and then stretches out, doubling A, how fast is it falling when it reaches a new 

terminal speed? 
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Example: A raindrop with radius R = 1.5 mm falls from a cloud that is at height h = 

1200 m above the ground. The drag coefficient D for the drop is 0.60. Assume that the 

drop is spherical throughout its fall. The density of water w is 1000 kg/m
3, and the 

density of air a is 1.2 kg/m
3. 

(a)  What is the terminal speed of the drop? 
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Numerical Integration: Euler’s Method 

If you cannot solve the exact solutions of x(t), you need to express it numerically.  In 

the real world you may always need the numerical representations of motions. 

 

EX1: Consider the initial value problem 24.01.0' xyy += , ( ) 42 =y . Use Euler’s 

method to obtain an approximation of ( )5.2y  using 1.0=h  and 05.0=h . 
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x y y'

0 2 4 1.8

1 2.1 4.18 1.96845

2 2.2 4.376845 2.145209

3 2.3 4.591366 2.330275

4 2.4 4.824393 2.523645

5 2.5 5.076758 2.725317  

 

x y y'

0 2 4 1.8

1 2.05 4.09 1.883237

2 2.1 4.184162 1.968552

3 2.15 4.282589 2.055944

4 2.2 4.385387 2.145413

5 2.25 4.492657 2.236959

6 2.3 4.604505 2.330581

7 2.35 4.721034 2.426279

8 2.4 4.842348 2.524053

9 2.45 4.968551 2.623902

10 2.5 5.099746 2.725826  

 

given an acceleration ),,( tvxa  , if we can not find the velocity   position by  

integration and differentiation, you may express it by the Euler method: 
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a = 2 m/s2, t = 0.1 s, v(0) = 0, x(0) = 0 -          v(t) = at, x(t)=1/2*at2 

Step t v x  v(t) x(t) 

0 0. 0 0  0 0 

1 0.1 0.2 0  0.2 0.01 

2 0.2 0.4 0.02  0.4 0.04 

3 0.3 0.6 0.06  0.6 0.09 

4 0.4 0.8 0.12  0.8 0.16 

 


